

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

Approved by AICTE, 2(f) and 12(B) recognized by UGC, New Delhi Accredited by NAAC, Accredited by NBA, Certified by ISO 9001 - 2015

SERVICE TO MANKIND IS SERVICE TO GOD

His Divine Soul Padmabhushana SriSriSri Dr.BalagangadharanathMahaSwamiji

FounderPresident,SriAdichunchanagiriShikshanaTrust®

Belief in God is not ignorance or illusion. It is a belief that there is an unseen, ineffable Power that transcends all our powers of muscles, mind and lives.

His Holiness ParamaPujya Sri Sri Sri Dr.NirmalanandanathaMahaSwamiji

 $President, Sri\ Adichunchanagiri Shikshana Trust \\ @$

True richness is the generosity of heart. Cultivate it and work to help the less fortunate ones in life.

Revered Sri Sri Dr.Prakashanatha Swamiji

Managing Director, BGS&SJB Group of Institutions &Hospitals

People and prosperity follow the path which the leaders take. So the elders and leaders should make sure that they give the right leadand take the rightpath.

	Sy	llabus	for 1 st & 2 nd Semester									
The syllabus,	The syllabus, scheme and guidelines are provided in detail. The syllabus, scheme and guidelines are subjected to changes if any needed. The updates will be done and intimated timely.											
The Syllabus 1	book is availab	ole on	www.sjbit.edu.in									
For any quer	ies, please wr	ite to	academicdean@sjbit.edu.in									
			UPDATES									
Release/ Revision	Date		Remarks									
Version 1	03/09/2025											

SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru 560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

AUTONOMOUS SCHEME OF TEACHING & EXAMINATIONS (STE) PG - MCA 1st year

	SCHE	ME:	2025	SEM:	I					Date	12.0	7.20	25		
		ount					Tead	Teaching Hrs/Week				Examinations			
SL	Course	0				22	L	Т	P	s	55		SEE	SEE	
No	Туре	Course type	Course Code	Course Title	BOS	Credits	Lecture	Tutorial	Practical	SAAE	CIEMarks	Dur.	Th. Mrks	Lab. Mrks.	Tot. Marks
1	IPCC	1	25MCAI101	Programming in Python		4	3	0	2	1	50	3	50	-	100
2	BSC	1	25MCAT102	Mathematical Foundations for Computer Applications		3	3	0	0	1	50	3	50		100
3	PCC	1	25MCAT103	Computer Networks		3	3	0	0	1	50	3	50		100
4	PCC	2	25MCAT104	Database Management Systems	MCA	3	3	0	0	1	50	3	50	e=3	100
5	PCC	3	25MCAT105	Web Technologies	M	3	3	0	0	1	50	3	50		100
6	PCC	4	25MCAT106	Software Engineering		3	3	0	0	1	50	3	50		100
7	PCCL	1	25MCAL107	Laboratory		1	<i>27</i>	7	2	1	50	3	-1	50	100
8	PCC	1	25MCAT108	Research Methodology & IPR		3	3	_		1	50	3	50		100
	500	(4)	2.	Total	30.	23	21	0	4	8	400		350	50	800

Note: BSC-Basic Science Courses, PCC: Professional core. IPCC-Integrated Professional Core Courses, PCCL - Professional Core Course Laboratory. Each Course (PCC/PCE) shall have case study discussion and may be considered as a part of assignment.

SAAE: Students Academic Activity Engagement Hours- Self learning, Project based learning, activity based learning, peer learning etc..., Compulsory min hours to be adopted per week by the faculty is mentioned. More no. of hours may be planned by the faculty. Holistic planning shall be done by the HOD at the class level for effective & Productive Outcomes. However, allocation of these hours in the timetable is not required.

SLC: 10 to 15 courses shall be defined at the begining of the course. The student should select any one course of their interest and mentors will be alloted to them to guide through the course. Weekly assignment reviews shall be done by mentors. The sudent should complete the course by end of 3rd semester. Rubrics and methodology will be defined separately.

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru 560060
Approved by AICTE, New Delhi.
Autonomous Institute affiliated to Visvesvaraya Technological University, Belaugavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

AUTONOMOUS SCHEME OF TEACHING & EXAMINATIONS (STE) PG - MCA 1st year

- 34	SCH	EME:	2025	100	SEM:	п					Date	: 12.0	07.2	025		
S					Dept.	60	2000	Tead	eaching Hrs/Week				Examinations			
L	Course	Course Title Course Code		Course Title	Ig D	ing Dep setting dept	redits	L	T	P	S	rks		SEE	SEE	
0	Туре			Course True	Teaching OP sett		OP S	Lectur	lutorial	Practi cal	SAAE	CEMarks	Dur.	Th. Mrks	Lab. Mrks.	Tot. Marks
1	IPCC	2	25MCAI201	Machine Learning			4	3	0	2	1	50	3	50	200	100
2	IPCC	3	25MCAI202	Internet of Things			4	3	0	2	1	50	3	50	==	100
3	PCC	5	25MCAT203	Object Oriented Programming using Java			3	3	0	0	1	50	3	50	25 22	100
4	PCC	6	25MCAT204	Data Structures & Algorithms	V.	MCA	3	3	0	0	1	50	3	50	-	100
5	PCC	7	25MCAT205	Operating Systems-Linux	MCA	M	3	3	0	0	1	50	3	50	923	100
6	PCCL	2	25MCAL206	DSA Laboratory			1			2	1	50	3	5-3	50	100
7	PCCL	3	25MCAL207	Object Oriented Programming Laboratory	- 16 - 16		1			2	1	50	3	-	50	100
8	AEC	1	25MCAAF21	Data Visualization and Analysis with Power BI			1	0	1	1	1	50	2	50	e - ce	100
				Total			20	15	1	9	8	400		300	100	800

PCC: Professional core. IPCC-Integrated Professional Core Courses, PEC: Professional Elective Courses, PCCL - Professional Core Course Laboratory, AEC - Ability Enhancement course. SLC: 10 Courses shall be defined at the beginning of the course. Gthe student should select any one course of their interest and mentors will be alloted to them to guide through the course. Weekly assignment reviews shall be done by mentors. The student should complete the course by end of 3rd semester. Rubrics and methodology will be defined separately. SLC will be creatited in 4th semester.

SAAE: Students Academic Activity Engagement Hours-Self-learning, Project based learning, activity based learning, peer learning etc..., Compulsory min hours to be adopted per week by the faculty is mentioned. More no. of hours may be planned by the faculty. Holistic planning shall be done by the HOD at the class level for effective & Productive Outcomes. However, allocation of these hours in the timetable is not required.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

		Table of Contents	
Sl No.	Subject Code	Subject Name	Page Number
1	25MCAI101	Programming in Python	1
2	25MCAT102	Mathematical Foundations for Computer Applications	6
3	25MCAT103	Computer Networks	9
4	25MCAT104	Database Management Systems	12
5	25MCAT105	Web Technologies	16
6	25MCAT106	Software Engineering	20
7	25MCAL107	DBMS & Web Technologies Laboratory	24
8	25MCAT108	Research Methodology & IPR	28
9	25MCAI201	Machine Learning	33
10	25MCAI202	Internet of Things	37
11	25MCAT203	Object Oriented Programming using Java	41
12	25MCAT204	Data Structures & Algorithms	44
13	25MCAT205	Operating Systems-Linux	47
14	25MCAL206	DSA Laboratory	50
15	25MCAL207	Object Oriented Programming Laboratory	53
16	25MCAAE21	Data Visualization & Analysis with Power BI	55

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	I	Cou	ırse Type:	-	IPCC						
Course Title: Programming in Python											
Course Co	de:	2	5MCAI101		Credits:	4					
Teaching F	Teaching Hours/Week (L:T:P:S)				Total Hours:	40					
CIE Mark	s: 5	0	SEE Marks:	50	Total Marks:	100					
SEE Typ	e:		Theory		Exam Hours:	3 Hrs.					

I. Course Objectives:

- To learn Python programming basics, object-oriented concepts, and advanced libraries for solving problems.
- To apply advance python data structures for solving problems efficiently.
- To use Python for data analysis, including data manipulation and visualization.
- To build Python-based solutions for real-world problems like file handling and web scraping.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III. COURSE CONTENT	
III(a). Theory PART	
Module-1: Python Fundamentals and Environment Setup, Introduction to Python, Python ecosystem, Comparative programming paradigms, Advanced environment setup and development workflows, Professional IDE configurations (PyCharm, VSCode, Jupyter), Virtual environment management, Syntax and Data Handling, Comprehensive variable scoping, data type internals, Operator overloading, Memory management techniques, Type hinting and annotations.	8 Hrs.
Textbook1: Chapters 1-4, Text Book2: Chapter 1-2 Reference Book1: Chapter 1-2	
RBT Levels: 2, 3	
Module-2: Data Structures and Advanced Collections, Python Collection Techniques - lists, tuples, sets, dictionary operations, Performance characteristics of data structures, Immutable and mutable data structures, string manipulation techniques. Comprehensions and Generators, Itertools.	8 Hrs.
Textbook1: Chapters 5-7, Text Book2: Chapters 3-4	
Reference Book2: Chapter 2-3 RBT Levels: 2, 3, 4	
Module-3: Functions, Modules, and Advanced Programming Paradigms - Object-Oriented Programming (OOP) concepts, Python Function Techniques, First-class functions, Closures and decorators, Function and method argument handling, Context managers, Functional programming concepts -Lambda functions, Map(), Filter(), Reduce() functions practical applications, Module and Package Development, Package distribution.	8 Hrs.
Textbook 1: Chapters 8-10, Text Book2: Chapters 5-6	
Reference Book1: Chapter 7-8 RBT Levels: 2,3,4	
Module-4: Error Handling and File Processing, File Handling, Comprehensive file I/O techniques, working with various file formats, Streaming and large file processing, Binary and text file manipulations, Error Management, exception handling, custom exception creation, Logging and error tracking.	8 Hrs.
Text Book1: Chapters 11-14, Text Book2: Chapters 14-15	
Reference Book2: Chapter 4 RBT Levels: 2,3,4	
Module-5: Advanced Python Ecosystem and Practical Applications - Advanced Standard and Third-Party Libraries, Comprehensive standard library exploration, Database Integration, Regular expressions usage, Datetime and time manipulation, Introduction to scientific computing libraries - NumPy and Pandas, Practical Integration and Real-world Techniques, Library selection and best practices, Data processing workflows.	8 Hrs.
Text Book1: Supplementary Chapters, Text Book2: Chapters 16-18 Reference Book1: Chapter 13-14	
RBT Levels: 2,3,4	

	III(b). PRACTICAL PART
Sl. No.	Experiments / Programs / Problems
	PART – A
1	Create a simple program to manage student grades
	 Allows input of student names and their subject grades
	 Calculates average grade for each student
	 Determines pass/fail status
	Prints a formatted grade report
	Stores student information in a list or dictionary
2	Design a basic expense tracking application
	Record daily expenses
	Categorize expenses (food, transport, utilities, etc.)
	Calculate total expenses
	Find expenses in each category
	Generate a simple expense summary
3	Allow adding and removing expense entries Develop a basic library book tracking system
3	
	Add new books to the library Digrapy all available backs.
	Display all available books Scorph for healts by title or outhor
	Search for books by title or author Track heals he was in a and nature datas.
	 Track book borrowing and return dates Maintain a list of borrowed and available books
4	Create a comprehensive temperature conversion tool
4	Convert temperatures between Celsius, Fahrenheit, and Kelvin
	 Convert temperatures between Cersius, Famelinent, and Kervin Create functions for each conversion type
	 Handle user input and validation
	 Display conversions in a neat format
	 Include error handling for invalid inputs
5	Design a simple contact information management program
3	Add new contacts (name, phone number, email)
	 Display all contacts
	 Search for a contact by name
	Delete a contact
	Update contact information
	Store contacts in a file
6	Develop an interactive quiz program
•	Stores multiple-choice questions
	Allows user to take the quiz
	Keeps track of correct and incorrect answers
	Provides final score
	Offers option to retry the quiz
	Randomizes question order
7	Create a simple product inventory tracking system
	Add new products with details (name, price, quantity)

		• U ₁	pdate pr	oduct q	uantity								
		• Ca	alculate	total inv	ventory	value							
			enerate l										
		• Re	emove p	roducts	from in	ventory	,						
		Display current inventory status Design a secure password concretion tool											
8	D	Design a secure password generation tool											
		Generates random passwords											
		Allows user to specify password length											
		• Include options for character types (uppercase, lowercase, numbers, symbols)											
		• Pr	ovide pa	assword	strengt	h assess	ment						
		Provide password strength assessmentOption to save generated passwords											
		• In	nplemen	t basic j	passwor	d valida	ition						
9	D	evelop a	a basic t	ask mar	nagemer	nt syster	n						
		• A	dd new	tasks									
		• M	ark task	s as con	nplete								
		• Re	emove to	asks									
		• D:	isplay al	l tasks									
		• Pr	rioritize	tasks									
		• Pe	ersist tas	ks betw	een pro	gram ru	ns						
10			simple w			tion pro	gram						
			veather o										
			urrent te										
			ather co										
			asic wea										
			arching 1										
	H	andle po	otential	input er	rors	D.4	RT – H	•					
		Make a m	roun of t	vo stude	ents ner h				owing m	ini proje	ect proble	m)	
11								a data p				,111 <i>)</i>	
12								ext senti					
12					maryze	- Devi		- SCIIIII					
				IV	. COUI	RSE OU	JTCON	IES					
CO1			rate an u for wri						construc	ets and c	bject-or	iented	
CO2								Matplot	lib, and	Seabor	n for dat	a	
CO2	Pı		g, analy										
CO3		Analyze datasets and design solutions for real-world problems, leveraging file handling techniques and web scraping tools.											
CO4	Create efficient Python-based solutions for data-driven applications, demonstrating an ability to solve complex problems through code implementations.												
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)												
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4	
CO1	2									2	1		
CO2	1		2							1	2		

CO3		2	1				1	2	2
CO4	2	1	2				2	1	1

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure - CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure - CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks:

SI No		Name of the author	Edition and Year	Name of the publisher
1	Python Crash	Eric Matthes	2019	No Starch Press,
	Course			2019
2	Fluent Python	Luciano Ramalho	2015	O'Reilly Media

VII(b): Reference Books: (Insert or delete rows as per requirement)

1	Python Cookbook	David Beazley and	2013	O'Reilly Media
		Brian K. Jones		
2	Effective Python:	Brett Slatkin	2019	Addison-Wesley
	90 Specific Ways			Professional
	to Write Better			
	Python			

VII(c): Web links and Video Lectures (e-Resources):

- 1. FreeCodeCamp: Learn Python Full Course for Beginners: https://www.youtube.com/watch?v=ROjZy1WbCIA: https://www.youtube.com/watch?v=ROjZy1WbCIA
- 2. Crash Course Python by FreeCodeCamp: https://www.freecodecamp.org/news/tag/python/: https://www.freecodecamp.org/news/tag/python/

3. Python for Everybody Specialization by University of Michigan on Coursera: https://www.coursera.org/specialization/python: https://www.coursera.org/specialization

s/python
4. Automate the Boring Stuff with Python by Al Sweigart: https://automatetheboringstuff.com/: https://automatetheboringstuff.com/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	Semester: I Course Type: BSC										
Course Title: Mathematical Foundations for Computer Applications											
Course Code: 25MCAT102 Credits: 3											
Teaching Hou	rs/We	eek (L:T:P:S)		3:0:0:1	Total Hours:	40					
CIE Marks	: 50	0 SEE Ma	rks:	50	Total Marks:	100					
SEE Type	:	T	heory		Exam Hours:	3 Hrs.					

I. Course Objectives:

- Analyze basic concepts of mathematical logic for analyzing propositions and proving theorems
- Apply sets and their operations algebraically to solve real world problems.
- Examine the basics of graph theory and their various properties.
- Model problems using graphs and to solve these problems algorithmically.
- To facilitate the students with a concrete foundation of probability distributions

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III. COURSE CONTENT

Module1

8 Hrs

Basic Structures: Sets, Principle of Inclusion, Exclusion and pigeon hole principle Functions and Matrices: Eigen values and Eigen vectors.

Text Book 1

Module2

8 Hrs

Fundamentals of Logic: Propositions- Logical connectives, Tautologies, contradictions. Logical equivalence- The Laws of Logic, inverse, converse and contra positive. Logical Implication – Rules of Inference, Quantifiers- Types and uses of quantifiers.

Text Book 1

Module3

8 Hrs

Introduction to Graphs: Application of graphs finite, infinite and bipartite graphs Incidence and Degree Isolated vertex, pendant vertex and Null graph. Paths and circuits Isomorphism, sub graphs, walks, paths and circuits, connected graphs, disconnected graphs and components.

Text Book 1

Module4

8 Hrs

Euclidean and Hamiltonian graphs: Euler graphs, Operations on graphs, Hamiltonian paths and circuits, Travelling salesman problem. Directed graphs types of digraphs, Digraphs and binary relation.

Text Book 1

Module5

8 Hrs

Probability Distributions: Review of basic probability theory. Random Variables (Discrete and Continuous). Probability mass and density functions. Mathematical expectation, Mean and variance. Discrete probability distributions: Binomial, Poisson and Normal distributions (derivations for mean and standard deviation for Binomial and Poisson distributions only)-Illustrative examples. Applications to analyze the performance of the algorithms..

Text Book 2

IV.COURSE OUTCOMES

Sl.No.	Description								
CO1	Understand basic concepts of mathematical logic for analyzing propositions and proving								
	theorems and Use sets and its operations algebraically for solving real world problems.								
CO2	Understand the basics of graph theory and their various properties								
CO3	Model problems using graphs and to solve these problems								
	Algorithmically.								
CO4	Apply the knowledge of statistical techniques and probability distributions of Random variables.								

	V. CO/PO Mapping											
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4
CO1	2									2	1	
CO2	1		2							1	2	
CO3		2	1							1	2	2
CO4	2	1	2							2	1	1

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII (a). Text Books

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher	
1	Discrete	Kenneth H Rosen	7 th Edition	McGraw Hill	
	Mathematics & its				
	Applications				
2.	Probability &	Ronald E.	9th Edition, 2023	Pearson Education	
	Statistics for	Walpole,Raymond H			
	Engineers &	Myers, Sharon L			
	Scientists	Myers & Keying Ye			

VII(b). WeblinksandVideoLectures(eResources):

- 1. https://archive.nptel.ac.in/courses/111/106/111106086/
- 2. https://onlinecourses.nptel.ac.in/noc20_cs82/preview
- 3. http://nptel.ac.in/courses.php?disciplineID=111
- 4. http://www.class-central-central.com/subject/math(MOOCs)
- 5. http://academiccarth.org/

VIII. Skill Development Activities Suggested

- 1) Translating English Sentences into logical statements.
- 2) Applying Graph theory concepts to design State and National highways across the Country.

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	I	Course Type: PCC							
Course Tit	Course Title: Computer Networks								
Course Cod	e:	25MCAT10	3		Credits:	3			
Teaching	Teaching Hours/Week (L:T:P:S)				Total Hours:	40			
CIE Marks	5: 5	0 SEE N	larks:	50	Total Marks:	100			
SEE Type	:		Theory		Exam Hours:	3 Hrs			

I. Course Objectives:

- Demonstration of application layer protocols
- Disseminate the Wireless and Mobile Networks covering IEEE 802.11 Standard
- Explain routers, IP and Routing Algorithms in network layer
- Discuss transport layer services and understand UDP and TCP protocol.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to

improve	the student's understanding.	
	III. COURSE CONTENT	
	III(a). Theory PART	
File Sha Manager Things (Internet Softward Using To	-1: Applications: Communication Applications, Web-Based Applications, ring and Storage Applications, Remote Access Applications, Network ment and Monitoring Applications, Security Applications, Internet of IoT) Applications, Requirements, Network Architecture: OSI Model, Architecture, Multiplexing and Demultiplexing, Implementing Network e, Performance CP/IP sockets, write a client-server program to make the client send the file d to make the server send back the contents of the requested file if present	8 Hrs
Textboo	ok: Chapter 1	
RBT Le	evels: 2,3	
4B/5B), CRC, Re Wireless	-2: Perspectives on Connecting, Encoding (NRZ, NRZI, Manchester, Framing, Error Detection: 2-D Parity, Internet Checksum Algorithm, eliable Transmission, Ethernet and Multiple Access Networks (802.3), s. Program for Hamming code generation for error detection and correction.	8 Hrs
	ok1: Chapter 2	
RBT L	evels: 2,3,4	
Bridging Mobile I for trans	-3: Internetworking and Advanced Internetworking Switching and g, Basic Internetworking (IP), Routing, The Global Internet, Routing among Devices. Write a program for distance vector algorithm to find suitable path mission.	8 Hrs
Textboo	ok1: Chapter 3,4	
RBT L	evels:2,3,4	
(UDP), l Control, leaky bu	-4: End-to-End Protocols and Congestion Control Simple Demultiplexer Reliable Byte Stream (TCP), Queuing Disciplines, TCP Congestion Congestion-Avoidance Mechanisms. Program for congestion control using cket algorithm. ok1: Chapter 5,6	8 Hrs
RBT L	evels:2,3,4	
	-5: Network Security and Applications Cryptographic Building Blocks, Key ribution, Firewalls, Traditional Applications, Infrastructure Services	8 Hrs
Textboo	ok1 : Chapter 8,9	
RBT L	evels:2,3,4	
	IV. COURSE OUTCOMES	
CO1	Apply the basic concepts of networking and to analyse different parameters such bandwidth, delay, throughput of the networks for the given problem.	ch as
	Apply different techniques to ensure the reliable and secured communication in	vired and

CO3	A	Analyze the networking concepts of TCP/IP for wired and wireless components.											
CO4	Id	Identify the issues of Transport layer to analyze the congestion control mechanism.											
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)												
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4	
О													
CO1	2	1	2							1			
CO2	2	1	2							2			
CO3	1	2	2 2 1 1										
CO4	1		1							1			

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Computer Networks A Systems Approach	Larry L Peterson and Bruce S Davie	6 th edition 2019	Morgan Kaufmann Publishers

VII(b): Reference Books: (Insert or delete rows as per requirement)

1	Data	Behrouz A. Forouzan	6 th edition 2019	Tata McGraw Hill
	Communication			
	and Networking			

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.digimat.in/nptel/courses/video/106105183/L01.html
- 2. http://www.digimat.in/nptel/courses/video/106105081/L25.html
- 3. https://nptel.ac.in/courses/106105081
- 4. VTU e-Shikshana Program

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	I C	ourse Type:	PCC				
Course Title: Database Management Systems							
Course Code:	2	5MCAT104		Credits:	3		
Teaching Hour	Teaching Hours/Week (L:T:P:S)			Total Hours:	40		
CIE Marks:	CIE Marks: 50 SEE Marks:			50 Total Marks:			
SEE Type:		Theory		Exam Hours:	3 Hrs		

I. Course Objectives:

- Analyze the basic concepts and the applications of database systems.
- Evaluate the different issues involved in the design and implementation of Database System.
- Explain the basic concepts of relational data model, entity relationship model, relational database design and database language SQL
- Design and build a simple database system and demonstrate competence with the fundamental tasks involved with modelling, designing, and implementing a DBMS

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.						
III. COURSE CONTENT						
III(a). Theory PART						
Module-1:Introduction, Purpose of Database System, Views of data, data models, types of data base, characteristics of data approach, three schema architecture of DBMS, components of DBMS.						
Textbook1&2: Chapter 1-2						
RBT Levels: 2						
Module-72: Introduction to the Relational Model, Structure Database Schema, Keys Schema Diagrams. Overview of the SQL Query Language, Basic Structure of SQL Queries, Data types, creating a database, integrity constraints, triggers. Textbook1: Chapter 3-5						
RBT Levels: 2,3						
Module3: Overview of the Design Process, The Entity-Relationship Model, Entities, Attributes and Entity sets Relationships and Relationship sets, roles and structural constraints, Reducing E-R Diagrams to Relational Schemas, specialization and generalization. 8 Hrs 8 Hrs						
Textbook2: Chapter 7- 8						
RBT Levels:2,3,4						
Module-47: Introduction, functional dependencies, First, Second, and third normal forms, Boyce/Codd normal form. Introduction, Multivalued dependencies and fourth normal form, Join dependencies and fifth normal form.						
Textbook2: Chapter 15						
RBT Levels:2,3,4						
Module-5: Transaction State- Implementation of Atomicity and Durability Concurrent Executions Serializability- Recoverability Implementation of Isolation Testing for serializability- Lock Based Protocols Timestamp Based Protocols- Validation- Based Protocols. Buffer Management, Failure with Loss of Non- Volatile Storage.						
Textbook 1: Chapter 17 - 19						
RBT Levels:2,3,4						
IV. COURSE OUTCOMES						
CO1 Demonstrate proficiency in using and managing Database Management Systems (DBMS).						
CO2 Execute SQL queries and normalize databases for efficient data management.						
CO3 Implement advanced database techniques, including indexing and query optimization.						

CO4	D	Design effective data models using Entity-Relationship Diagrams (ERD) and NoSQL											
004	d	atabases.											
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)												
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4	
О													
CO1	2	7							1				
		2											
CO2	2	2								2			
CO3	2	2								2			
CO4	2	2	2									1	
		•		•						•			

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure - CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl.	Title of the Book	Name of the author	Edition and	Name of the
No.	THE OF THE DOOK	Name of the author	Year	publisher
1	Database System	Silberschatz, Korth	7th	Mc Graw hill
	Concepts		edition,2019	
2	Fundamentals of	Elmasri and Navathe	6th Edition,	Pearson
	Database Systems		2011,	

VII(b): Reference Books: (Insert or delete rows as per requirement)

1	An Introduction to	C.J. Date, A.Kannan,	Eight Edition.	Pearson	
	Database systems	Swami Nadhan			
2	Fundamentals of	M. L. Gillenson	Student Edition	Wiley	
	Database				
	Management				
	Systems				
3	Database	Raghu	3rd Edition,2002	McGrawHill	
	Management	Ramakrishnan,			
	Systems	Johannes Gehrke,			

VII(c): Web links and Video Lectures (e-Resources):

- 1. dev.mysql.com
- 2. www. Postgressql.org.
- 3. https://www.w3schools.com/mysql/mysql rdbms.asp
- 4. https://www.w3schools.in/dbms/intro

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester	I	Course Type:										
Course Ti	Course Title: Web Technologies											
Course C	ode:	25MCAT105		3								
Teaching	Hours	Week (L:T:P:S)	3:0:0:1	Total Hours:	40							
CIE Marks:	50	SEE Marks:	50	Total Marks:	100							
SEE Type:		Theory		Exam Hours:	3 Hrs							

I. Course Objectives:

- Creating the small webpage using xhtml5.
- Use different tags of html to create webpage.
- Use of CSS and JavaScript
- Developing the dynamic document using JavaScript.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III(a). Theory PART						
· · · · · · · · · · · · · · · · · · ·	8 Hrs					
Basicsyntax, Standardstructure, Basictextmarkup, Images, HypertextLinks. Lists, Tables, Forms, Frames, Syntactic differences between HTML and XHTML.						
Textbook1: Chapter 1,2						
RBT Levels: 2						
Module-2: CascadingStyleSheets: Introduction,Levelsofstylesheets,Stylespecificationformats,Selectorforms,Propertyvalueforms,Fontproperties,Listproperties,Color,Alignmentoftext,The boxmodel,Backgroundimages,The and <div>tags,Conflictresolution. Textbook1: Chapter 3</div>						
RBT Levels: 2						
Module-3:JavaScript: ntroductiontoJavaScriptScreenoutputandkeyboardinput,controlsstatements,Arrays ndfunctions, pattern matching The Document Object Model, DOM-methods, lements Accessin JavaScript,ElementAccess,EventsandEventHandling-onclick(),onload(),JavaScript.validations						
Textbook1: Chapter 4,5,6						
RBT Levels: 2,3						
Module-4: IntroductiontoXML: XML- Introduction, syntax, Document structure, Document Type Definitions, Namespaces, XMLschema, displaying raw XML documents Handling structure datastore: Introduction to JSON, Array literals, Object literals, mixing literals, JSON Syntax, JSON data types, JSON Encoding and Decoding, Introduction to Web3.0. Textbook1: Chapter 7	8 Hrs					
RBT Levels: 2,3						
	8 Hrs					
·	0 1115					
Module-5: Your first React Web Application, Components, components & server Textbook 2: Chapter 1,2						

	IV. COURSE OUTCOMES													
CO1	CO1 Describe the basic concepts of web applications													
CO2	.	Apply the knowledge of designing web application that uses asynchronous communication.												
CO3	D	Design single page web application using javascript framework												
CO4	Design an interactive web page with serverside scripting language for real world problems													
		V	. CO-PO-	PSO MA	APPI	NG (mark	H=3; M=	=2; L=	1)				
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4		
CO1	2													
CO2	2	2												
CO3				2						1	1			
CO4					2		1	1	1		1	1		

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Programming the World Wide Web.	Robert W. Sebesta	7th Editon, 2012.	Pearson Education
2	Full Stack React	Anthony Accomazo	1 st Edition 2017	FullStack.IO

VII(b): Reference Books:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher	
1	WebProgrammingBuildingI nternetApplications	ChrisBates	3rdEdition	WileyIndia,2006	
2	Internet& WorldWideWebHowtoProg ram	Deitel,P.J. Deitel,A.B .Goldberg:	3rdEdition	Pearson ,2004	

VII(c): Web links and Video Lectures (e-Resources):										
 https://www.w3schools.com https://www.tutorialspoint.com 										
VIII: Activi	ty Based Learning /	Practical Bas	sed Learnin	g/Experie	ential learning:					
Activity Base	ed Learning (Suggest	ed Activities	in Class)/ Pr	actical Ba	sed learning					
 Quizzes 	• Quizzes									
Assignmen	• Assignments									
• Seminar										

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	I	Course Type				
Course Title	: Sof	tware Engineer	ring			
Course Code	:	25MCAT10	6		Credits:	3
Teaching H	lours	s/Week (L:T:P:	:S)	3:0:0:1	Total Hours:	40
CIE Marks:	5	SEE M	larks:	50	Total Marks:	100
SEE Type:			Theo	ry	Exam Hours:	3 Hrs

I. Course Objectives:

- Understand the principles, methodologies, and tools used in software development. Learn the importance of software processes and lifecycle models (e.g., Waterfall, Agile, Spiral).
- Gain knowledge of the fundamental principles and best practices in software engineering.
- Build proficiency in managing all stages of the software development lifecycle.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.

- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III. COURSE CONTENT

III(a). Theory PART

Module-1: : Introduction to Software Engineering, Definition and Scope of Software Engineering, Software Development Life Cycle (SDLC), Roles and Responsibilities in Software Development, Introduction to Agile Methodologies Overview of Scrum Framework.

Textbook1: Chapter 1-2, Textbook2: Chapter 1-5

RBT Levels: 2,3

Module-2: Requirements Engineering, Importance of Requirements Engineering Elicitation and Documentation of Requirements, Use Case Modeling and User Stories, Requirements Validation and Verification, Traceability and Change Management.

System Modelling: Context Models, Interaction Models: Use case modelling, Sequence diagrams. Structural models: Class diagrams. Behavioural models: Datadriven modelling, event driven modelling.

Textbook1: Chapter 4, 5 Textbook2: Chapter 6-10

RBT Levels: 2,3

Module-3: Software Testing : Development Testing : Unit Testing, Component Testing, System Testing. Test-driven development. Release Testing : Requirements based testing, Scenario Testing, Performance Testing. User Testing: Alpha Testing, Beta Testing , Acceptance Testing.

Textbook: Chapter 8

RBT Levels:2,3,4

Module-4: Software Evolution: Evolution Process. Legacy Systems. Software 8 Hrs Maintenance: Maintenance prediction, Software reengineering, Refactoring.

Quality Management: Software Quality, Software Standards, Reviews and Inspections, Quality management and agile development, Software measurement.

Textbook: Chapter 9,24

RBT Levels:2,3,4

Module-5: Agile Software Development : Agile Methods, Agile development techniques, Agile Project management, Scaling agile methods.

Textbook1: Chapter 3

					IV. (COUF	RSE O	UTC	OMES			
CO			and app		•					evelopment life	ecycle, incl	uding
CO2	2 A ₁	ply ap	propria	te meth	ods to	o gath	er and	speci	fy requi	rements for sof	ftware proj	ects.
CO	3 A ₁	Apply test-driven development methodologies for robust software development.										
CO	4 A ₁	ply Ag	gile Me	thods to	enha	ance s	oftwa	re dev	elopmen	nt processes.		
			V	CO-P	O-PS	SO M	APPI	NG (n	nark H=3	3; M=2; L=1)		
PO/	1	2	3	4	5	6	7	8	S1	S2	S3	S4
PSO												
CO1	2	2							2	2		
CO2		2								2		
CO3			2								2	
CO4		2								2		
Semes	ter E	nd Exa	e -CIE aminati e -CIE	ion (SE	EE): E Gui	deline	es.					
					VI				sources			
	: Tex	tbooks	: (Inse	rt or del	lete ro	ows as	per re	equire	ment)			
Sl. No.	Title	of the	Book		Nar	ne of	the au	ıthor		Edition and Year	Name of published	
1	Softv	vare En	igineeri	ng	Ian	Somn	nervill	e		2020	Pearson	
2			igineeri s Appro	_	Rog	ger S.	Pressn	nan		2020	McGraw- Education	
VII(b)	: Ref	erence	Books	: (Inser	t or d	elete 1	rows a	s per	requiren	nent)		
1	`			Rajib	Mall		Fifth Edition, Jan 2021			РНІ		

VII(c): Web links and Video Lectures (e-Resources):

Tutorials Point : Software Engineering :

https://www.youtube.com/watch?v=4b1D1QFEel0&list=PLWPirh4EWFpG2b1L3CL-OAPYcM25jLjXH

NPTEL Swayam Course: https://onlinecourses.nptel.ac.in/noc24_cs119/preview - Software Engineering by Prof. Rajib Mall, IIT Kharagpur

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Assignments
- Seminar (Presentation)

Sri Adichuuchanagiri Shikshana Trust (R) SJB Institute of Technology GS Health and Education City, Dr. Vishnuyardhana Road, Kengeri, Bengaluru-560066

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Seme	ster:	I	Cour	se Type:		PCCL						
Course	Course Title: DBMS & Web Technologies Laboratory											
C	ourse Co	de:	25MCAL107			Credits:	1					
	Teaching	g Hours/W	eek (L:T:P:S)	0:0):2:1	Total Hours:	40					
CIE	Marks:	50	SEE Marks:		50	Total Marks:	100					
SE	SEE Type: Laboratory Exam Hours											
CreatCreatCreatUnde	Create SQL queries for the small projects. Create database objects that include tables, constraints, indexes, and sequences. Creating and building dynamic web pages Understanding client and server-side scripting I. Practical Component - Experiments Set up a sample employee database and execute basic SQL queries											
3	same pu	blisher.				as which are all purne, date of birth,						
3	Conside	r the follow	wing schema: S	IUDENI	(USIN, nar	ne, date_oi_birth,	oranch, mark i,					

```
mark2, mark3, total, GPA) Execute the following queries:
        I. Update the column total by adding the columns mark1, mark2, mark3.
        ii. Find the GPA score of all the students.
         iii. Find the students who born on a particular year of birth from the date of birth
         column.
        iv. List the students who are studying in a particular branch of study.
         v. Find the maximum GPA score of the student branch-wise.
         vi. Find the students whose name starts with the alphabet
         vii. Find the students whose name ends with the alphabets
         viii. Delete the student details whose USN is given as 1001
4
        Design an ER-diagram for the following scenario.
         Convert the same into a relational model and then solve the there are many teams are
         contesting each having a Teamid, Team Name, City, a coach. Each team is uniquely
         identified by using Teamid. A team can have many Players and a captain. Each player is
         uniquely identified by Playerid, having a Name, and multiple phone numbers, age. A
         player represents only one team. There are many Stadiums to conduct matches. Each
         stadium is identified using Stadiumid, having a stadium name, Address (involves
         city, area name, pincode). A team can play many matches. Each match played between
         the two teams in the scheduled date and time in the predefined Stadium. Each match is
         identified uniquely by using Matchid. Each match won by any of the one team that also
         wants to record in the database. For each match man of the match award given to a
         player. Execute the following Queries:
        I. Display the youngest player (in terms of age) Name, Team name, age in which he
        belongs of the tournament.
         ii. List the details of the stadium where the maximum number of matches were played.
        iii. List the details of the player who is not a captain but got the man of match award at
         least in two matches.
         iv. Display the Team details who won the maximum matches.
         v. Display the team name where all its won matches played in the same stadium.
         Perform normalization(1NF,2NF,3NF) on a given set of tables
5
         Create initial tables
         CREATE TABLE authors (
           author id NUMBER PRIMARY KEY,
           author name VARCHAR2(100),
           birth date DATE
         );
         CREATE TABLE books (
           book id NUMBER PRIMARY KEY,
           title VARCHAR2(200),
           publication date DATE,
           genre VARCHAR2(50),
           author id NUMBER,
           FOREIGN KEY (author id) REFERENCES authors(author id)
         CREATE TABLE customers (
           customer_id NUMBER PRIMARY KEY,
           customer name VARCHAR2(100),
```

	email VARCHAR2(100)
);
	CREATE TABLE orders (
	order_id NUMBER PRIMARY KEY,
	order_date DATE,
	customer_id NUMBER,
	Total Amount Decimal (10,2)
_);
6	Consider the schema for Movie Database:
	ACTOR (<u>Act_id</u> , Act_Name, Act_Gender) DIRECTOR(<u>Dir_id</u> , Dir_Name, Dir_Phone)
	MOVIES(<u>Mov_id</u> , Mov_Title, Mov_Year, Mov_Lang, Dir_id) MOVIE_CAST (<u>Act_id</u> ,
	Mov id, Role)
	RATING(<u>Mov_id</u> , Rev_Stars) Write SQL queries to
	1. List the titles of all movies directed by 'Hitchcock'.
	2. Find the movie names where one or more actors acted in two or more
	movies.
	3. Listallactorswhoactedinamoviebefore2000andalsoinamovieafter 2015 (use
	JOIN operation).
	4. Find the title of movies and number of stars for each movie that has at
	least one rating and find the highest number of stars that movie received.
	Sort the result by movie title.
	5. Update ratingofall movies directed by 'StevenSpielberg' to 5.
7	Create an XHTML page that provides information about your department. Your XHTML
	page must use the following tags: a) Text Formatting tags b) Horizontal rule c) Meta
	element d) Links e) Images f) Tables (Use of additional tags encouraged).
8	Creating simple application to access data base using JDBC Formatting HTML with CSS
9	Write a javascript program for validating REGISTRATION FORM
10	Write a program for implementing XML document for CUSTOMER DETAILS.
11	Write a program to create a simple calculator Application using React JS
12	Create a Simple Login form using React JS
III. Tea	oching-Learning Process (General Instructions):

III. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather

than simply recall it.

- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

	IV. COURSE OUTCOMES													
CO1	Design	Design entity-relationship diagrams to solve given database applications												
CO2	1	Apply normalization techniques to improve the database design for the given problem. Build database and verify for its appropriate normalization for any given problem												
CO3	Explain	Explain the fundamental concepts of web technologies												
CO4	Implem	Implement user interactive web pages												
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4		
О														
CO1	2	2							1					
CO2	2	2								2				
CO3	2	2								2				
CO4	2	2	2									1		

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	I	Course Type:								
Course Title: Research Methodology & IPR										
Course Cod	Course Code: 25MCAT108				Credits:					
Teaching	Hours	/Week (L:T:P:S))	3:0:0:1	Total Hours:	40				
CIE Marks	Marks: 50 SEE Marks: 50		Total Marks:	100						
SEE Type	•	Т	heory		Exam Hours:	03				

I. Course Objectives:

- Grasp Research Fundamentals and Problem Definition Skills.
- Attain Proficiency in Research Design and Data Collection Techniques.
- Develop Data Interpretation and Report Writing Skills.
- Gain Awareness of Intellectual Property Types and Relevant Acts.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with

their own creative ways to solve them.

8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III. COURSE CONTENT

III(a). Theory PART

Module-1: Research Methodology: Introduction, Meaning of Research, Objectives of 8 Hrs Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

Textbook1

RBT Levels: 2

Module-2: Defining the Research Problem: Research Problem, Selecting the Problem, 8 Hrs Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration. Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

Textbook1, 2

RBT Levels: 2,3

Module-3: Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. Design of Sample Surveys: Introduction, Sample Design, Sampling and Nonsampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs.

8 Hrs

8 Hrs

Textbook2

RBT Levels:2,3,4

Module4: Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of 02.03.2021 updated 17/ 104 Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout. Types of Reports, Oral Presentation, Mechanics of Writing aResearch Report, Precautions for Writing Research Reports.

Textbook2

RBT I	Leve	els:2,3,4												
	Module-5: Intellectual Property (IP) Acts: Introduction to IP: Introduction to Intellectual 8 Hrs													
Property (IP), different types of IPs and its importance in the present scenario, Patent														
Acts: Indian patent acts 1970.Design Act: Industrial Design act 2000. Copy right acts:														
Copyright Act 1957. Trade Mark Act, 1999. Textbook3														
RBT Levels:2,3,4														
IV. COURSE OUTCOMES														
CO1	l A	Apply Research Fundamentals in Problem Solving.												
CO2		Demonstrate Effective Research Design and Data Collection Competence.												
CO3	3 A	Apply Skills in Data Interpretation and Report Writing.												
CO4	ı U	Understand and Address Intellectual Property Issues in Practical Contexts.												
V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)														
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4		
О														
CO1	2	2	1						1					
CO2	2	1	1							1				
CO3	1	2	1								2	1		
CO4	2	2	1									1		
					VI. A	Assessm	ent De	tails (CII	E & SEE)					
Genera	al R	ules:												
			•	th CIE : E & SE		,								
				ation (S										
Refer	to A	nnexur	e -C	IE & SE	E Gui	idelines	•							
						VII.	Learn	ing Reso	urces					
VII(a):	Te	xtbooks	: (Ins	sert or de	lete ro	ws as p	er requ	irement)						
Sl. No.	Titl	itle of the Book			N	Name of the author			Edi Yea	tion and r	Name of the publisher			
		esearch Methodology:				C.R.Kothari,GauravGarg			201	2018		New Age		
		Methods and Techniques									International			
	step	earch M -by- ste _l nners		dology a de for	R	anjit Ku	mar		201	1	Sage			
-						1. –			201		1 -			

Debirag E. Bouchoux

Intellectual property

Cengage learning

2013

VII(b	VII(b): Reference Books: (Insert or delete rows as per requirement)									
1	Research Methods: the	Trochim	2005	Atomic Dog						
	concise knowledge base			Publishing						
2	Conducting Research		2009	Sage						
	Literature Reviews: From									
	the Internet to Paper Fink									

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://onlinecourses.nptel.ac.in/noc22 ge08/preview
- 2. https://www.coursera.org/learn/research-methodologies

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

II Semester MCA

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology SS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	II Co	II Course Type: IPCC									
Course Title:	Course Title: Machine Learning										
Course Code:	25	5MCAI201	MCAI201 Credits: 4								
Teaching H	ours/We	ek (L:T:P:S)	3:0:2:1	Total Hours:	40						
CIE Marks:	50	SEE Marks:	50	50 Total Marks:							
SEE Type:	SEE Type: Theory			Exam Hours:	3 Hrs.						

I. Course Objectives:

- Introduce fundamental machine learning concepts and techniques.
- Develop practical skills in implementing machine learning models.
- Cultivate analytical thinking in solving complex computational problems.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to

	III. COURSE CONTENT	
	III(a). Theory PART	
Introdu Unsupe Preprod	e-1: Foundations of Machine Learning ction to Machine Learning, Types of Machine Learning: Supervised, ervised, Reinforcement Learning, Basic Mathematical Foundations, Data cessing Techniques, Model Evaluation Metrics	8 Hrs.
	ok1: Chapters 1-3	
	evels: 2, 3	
Linear Vector	Regression, Logistic Regression, Decision Trees, Random Forests, Support Machines, Practical Implementation using Python and Scikit-learn ok3: - Chapters 4-6	8 Hrs.
RBT L	evels: 3, 4	
Cluster (PCA),	e-3:Unsupervised Learning and Dimensionality Reduction ing Algorithms (K-Means, DBSCAN), Principal Component Analysis Dimensionality Reduction Techniques, Anomaly Detection, Practical ientations	8 Hrs.
	ok2: Chapters 7-8	
RBT L	evels: 3,4	
Enseml Introdu	e-4:Advanced Machine Learning Techniques ble Learning Methods, Gradient Boosting, Neural Network Basics, ction to Deep Learning, Overfitting and Regularization Techniques ok3: Chapters 9-10	8 Hrs.
RBT L	evels: 3,4	
Machin Strateg	e-5:Practical Machine Learning and Real-world Applications the Learning Project Lifecycle, Feature Engineering, Model Deployment ties, Case Studies, Ethics in Machine Learning. ok1: - Chapters 11-12	8 Hrs.
RBT I	Levels: 3,4	
	III(b). PRACTICAL PART	
Sl. No.	Experiments / Programs / Problems (insert rows as many requi	ired)
	PART – A	
1	Load the Iris dataset from scikit-learn, perform basic statistical analysis, ar visualization of feature distributions using seaborn. Train a K-Nearest Neiglassifier and report its accuracy.	

2	Implement a linear regression model to predict house prices using the Boston Housing
	dataset. Calculate mean squared error and R-squared value to evaluate model
	performance.
3	Develop a binary classification model using logistic regression to predict customer
	churn. Use a telecommunications customer dataset, split data into training and testing
	sets, and compute precision, recall, and F1-score.
4	Create a random forest classifier for credit card fraud detection. Implement feature
	scaling, handle class imbalance using techniques like SMOTE, and generate a confusion
	matrix.
5	Build a sentiment analysis model using naive Bayes classifier on a movie review dataset.
	Perform text preprocessing, vectorization, and evaluate model performance using cross-
	validation.
6	Develop a clustering algorithm using K-means to segment customer data based on
	purchasing behavior. Apply dimensionality reduction techniques like PCA and visualize
7	cluster distributions.
,	Implement gradient boosting regression to predict bike-sharing demand. Use feature engineering techniques, handle categorical variables, and compare performance with
	other regression models.
8	Create an ensemble learning model combining multiple classifiers (random forest,
O	gradient boosting, SVM) for a multi-class classification problem. Use voting and
	stacking techniques.
	PART - B
9	
9	PART - B Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include:
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include:
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: • Data preprocessing
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis
9	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to:
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to: Implement user-based and item-based recommendation approaches
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to: Implement user-based and item-based recommendation approaches Evaluate recommendation quality using metrics like precision and recall
	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to: Implement user-based and item-based recommendation approaches Evaluate recommendation quality using metrics like precision and recall Create a modular recommendation engine with different algorithm options
10	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to: Implement user-based and item-based recommendation approaches Evaluate recommendation quality using metrics like precision and recall Create a modular recommendation engine with different algorithm options IV. COURSE OUTCOMES
10 CO1	Develop a comprehensive machine learning pipeline for predicting employee attrition. Tasks include: Data preprocessing Feature selection Model training using multiple algorithms Hyperparameter tuning Model interpretation and feature importance analysis Design a recommendation system using collaborative filtering techniques. Use a movie rating dataset to: Implement user-based and item-based recommendation approaches Evaluate recommendation quality using metrics like precision and recall Create a modular recommendation engine with different algorithm options IV. COURSE OUTCOMES Explain basic machine learning principles and algorithmic approaches.

CO4	Eval	Evaluate machine learning model performance and ethical considerations.										
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)											
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4
CO1	2			2					2			
CO2		2	2							2		
CO3	2			2							2	
CO4		2					1	1				1

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Introduction to	Thomas M.	1e, 1997	McGraw-Hill
	Machine Learning	Mitchell		Education
	with Python			
2	Introduction to	Andreas C. Müller	1e, 2016	O'Reilly Media
	Machine Learning	and Sarah Guido		
	with Python			
3	Hands-On Machine	Aurélien Géron	2e, 2019	O'Reilly Media
	Learning with Scikit-			
	Learn, Keras, and			
	TensorFlow			

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.coursera.org/collections/best-machine-learning-ai
- 2. https://nptel.ac.in/courses/106105077
- 3. https://www.youtube.com/watch?v=5NgNicANyqM&ab_channel=freeCodeCamp.org

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	II		rse pe:	IPCC						
Course Tit	Course Title: Internet of Things									
Co	Course Code: 25MCAI202				Credits: 4					
Teacl	ning Ho	ours/Week	(L:T:P:S)	3:0:2:1	Total Hours:	40				
CIE Marks	E Marks: 50		SEE Marks:	50	50 Total Marks:					
SEE Type	SEE Type: Theory				Exam Hours:	3 Hrs				

I. Course Objectives:

- Define the IoT architecture and design along with functional/compute stack and data management.
- Explain IOT architecture for a given problem
- Understand the fundamental principles and components of Raspberry Pi and its role in IoT systems.
- Analyse the application protocol, transport layer methods for the given business case

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with

their own creative ways to solve them.	
8.Discuss how every concept can be applied to the real world and when that's possible improve the student's understanding.	e, it helps to
III. COURSE CONTENT	
III(a). Theory PART	
Module-1: What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack Toythook 1: Chapter 1.2	8 Hrs
Textbook1: Chapter 1,2	
RBT Levels: 2,3	
Module-2: Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies	8 Hrs
Textbook1 : Chapter 3,4	
RBT Levels: 2,3	
Module-3: IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP for IoT, Profiles and Compliances, Application Protocols for IoT, The Transport Layer, IoT Application Transport Methods.	8 Hrs
Textbook 1: 5,6	
RBT Levels: 2,3	
Module-4: Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics, Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures:OCTAVE and FAIR, The Phased Application of Security in an Operational Environment.	8 Hrs.
Texbook1: Chapter 7,8	
RBT Levels:2,3	
Module-5: IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, - Raspberry Pi: Introduction to Raspberry Pi,, An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Smart City, Smart City Use-Case Examples.	8 Hrs.
Textbook 1: Chapter 12	
RBT Levels:3,4	
III(b). PRACTICAL PART	

Sl. No.		Exper	riments /]	Program	s / Pro	blems (i	nsert rov	ws as m	any re	quired)	
1	Run some python programs on Pi like: Read your name and print Hello message with name Read two numbers and print their sum, difference, product and division. Word and character count of a given string Area of a given shape (rectangle, triangle and circle) reading shape and appropriate values from standard input Print a name "n" times, where name and n are read from standard input, using for and while loops. Handle Divided by Zero Exception. Print current time for 10 times with an interval of 10 seconds. Read a file line by line and print the word count of each line										l and e) here by	
2	Get in	put from 1	two switch	nes and s	witch o	n corres	ponding	LEDs				
3	Flash file.	an LED a	t a given o	on time a	nd off t	ime cycl	e, where	the tw	o times	s are ta	ken fi	rom a
4		h on a rela		en time ι	ising cr	on, wher	e the rel	ay's co	ntact to	ermina	ls are	
5	Acces	s an imag	e through	a Pi web	cam.							
6	Contr	ol a light s	source usi	ng webpa	age.							
7	Imple	ment an ir	ntruder sys	stem that	sends a	an alert t	o the giv	en ema	nil			
8	Get th	ne status o	f a bulb at	a remote	e place (on the I	LAN) the	ough w	eb.			
9	Get a	n alarm fro	om a remo	te area (through	LAN) i	f smoke	is detec	eted.			
	The to a. Intr d. An	student mu eam must st roduction lalysis and to be subi	submit a b o. Require Design, e	orief proj ment An . Implem	ect repo alysis c nentation	ort that m Softwar n f. Test	nust inclure Requiing. Bri	rement ef syno	Specif	ication		two
	I		Γ	V. COU	RSE O	UTCON	1ES					
CO1	Data	se the IoT	nt.				h function	onal/co	mpute	stack a	nd	
CO2	Apply	IOT arch	itecture fo	or a give	n proble	m.						
CO3	Introd	luce mach	ine learnir	ng and its	s applica	ations in	IoT dat	a analy	tics.			
CO4	Defin	e the conc	ept of IoT	and its	significa	ance in t	he conte	xt of di	gitizati	on		
			V. co	-PO-PSO	MAPPIN	IG (mark	H=3; M=	2; L=1)				
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4
001	2											
CO1	2 2 2											
CO2			_						-		- 4	
			2	2				1	1 1		1	1

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	IOT Fundamentals	David	1 st Edition	Pearson
		Hanes,		
		Gonzalo		
		Salgueiro		
VII(b): Reference Books: (Insert o	r delete rows	as per requirement)	
1	"Internet of Things (A	Vijay	1st Edition, 2014. (ISBN:	VPT
	Hands-on-Approach)",	Madisetti	978-8173719547)	
		&		
		Arshdeep		

VII(c): Web links and Video Lectures (e-Resources):

• https://youtu.be/WUYAjxnwjU4

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Bahga

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

• Quizzes • Assignments • Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	Semester: II Course Type:		PCC							
Course Tit	Course Title: Object Oriented Programming Using Java									
Course Coo	le:	25MCAT203			Credits:	3				
Teaching Ho	urs/We	eek (L:T:P:S)		3:0:0:1	Total Hours:	40				
CIE Mark	s: 5	0 SEE Ma	arks:	50	Total Marks:	100				
SEE Type: Theory					Exam Hours:	3 Hrs				

I. Course Objectives:

- Understand the principles of object-oriented programming (OOP).
- Develop skills in designing and implementing object-oriented solutions.
- Gain proficiency in using OOP concepts such as classes, objects, inheritance, polymorphism,
- and encapsulation.
- Apply design patterns to solve common programming problems and Handling the Exception.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

	III. COURSE CONTENT						
	III(a). Theory PART						
Module-1: The History and Evolution of Java: Features of Java An overview of Java: Object Oriented Programming, Evolution of Programming Paradigms, 3 java Principles Data Types and Variables, Type conversion and casting, Arrays, Classes, Objects, Methods, and Attributes, this Keyword, Benefits of Object-Oriented Programming.							
Textboo	ok 1: Chapter 1,2,3						
RBT Le	vels: 2,3						
and Desi Methods Associat	-2:. Basics of Procedural Programming vs Object-Oriented, Constructors tructors, Overloading of Constructors, Class Methods and Instance s, Access Modifiers: Public, Private, Protected, Class Relationships: tion, Aggregation, Composition.	8 Hrs					
Textboo	ok1: Chapter 1, 6, 7 ok2: Chapter 2,7 evels: 2,3						
Method	-3: Inheritance and Polymorphism, Inheritance: Types and Implementation, Overloading and Overriding, Polymorphism: Compile-Time and Runtime, Classes and Interfaces.	8 Hrs					
Textboo	k1: Chapter 1,8,9						
RBT L	evels:2,3,4						
Hiding,	-4: Encapsulation and Design Patterns, Encapsulation and Information Design Principles: SOLID, Design Patterns: Singleton, Factory, Observer, g Design Patterns to Real-World Problems.	8 Hrs					
Textboo	ok1: Chapter 1, Textbook2: Chapter 1						
RBT L	evels:2,3,4						
Throw, Metadata	-5: Generics: Generic Classes and Methods, Exception Handling: Try,Catch Γhrows, User-defined exceptions. Custom Exceptions, Reflection and a, Advanced Topics in OOP: Reflection and Metadata.	8 Hrs					
Textboo	ok1 : Chapter 10,14						
RBT L	evels:2,3,4						
	IV. COURSE OUTCOMES						
CO1	Understand the principles of object-oriented programming.						
CO2	Develop skills in designing and implementing object-oriented solutions.						
CO3	Gain proficiency in using OOP concepts such as classes, objects, inheritance, p and encapsulation.	olymorphism					

Apply design patterns to solve common programming problems.

CO4

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)												
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4	
О													
CO1	2	2	1						2	1	2		
CO2	2	2							2		2		
CO3	2	2	1						2	2	1		
CO4	2	2	1						2	2	1		

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure-CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher		
1	Java: The Complete Reference	Herbert Schildt	2018	McGraw-Hill Education		
2	Head First Java	Kathy Sierra and Bert Bates	2020	O'Reilly Media		
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	2020	O'Reilly Media		

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://m.youtube.com/watch?v=SiBw7os zI
- 2. https://ocw.mit.edu/courses/6-01sc-introduction-to-electrical-engineeringand-computer-science-i-spring-2011/pages/unit-1-software-engineering/object-orientedprogramming/
- 3. https://m.youtube.com/watch?v=CoHCUimLmdM
- 4. https://www.freecodecamp.org/news/object-oriented-programming-crashcourse

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Quizzes
- Assignments
- Seminar

Sri Adichurchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	II	Course Type:		PCC							
Course Titl	Course Title: Data Structures & Algorithms										
Course Cod	e:	25MCAT204		Credits: 3							
Teaching Hou	rs/We	ek (L:T:P:S)		3:0:0:1	Total Hours:	40 Hrs.					
CIE Marks	: 5	0 SEE Ma	arks:	50	Total Marks:	100					
SEE Type	:	7	Theory		Exam Hours:	3 Hrs					

I. Course Objectives:

- To introduce fundamental concepts of data structures and algorithms and their importance in solving computational problems.
- To develop the ability to analyze and implement data structures like arrays, linked lists, stacks, queues, trees, and graphs.
- To enable understanding and application of basic algorithmic techniques for sorting, searching, and graph traversal.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

III. COURSE CONTENT
III(a). Theory PART

Module	-1: Definition and Importance of Data Structures, Algorithm Design	8 Hrs							
	Concept of Recursion and its Applications, Basics of Algorithm Analysis, otic Notations: Big O, Omega, Theta.								
Textboo	ok1: Chapter 1, 3 Reference Book1: Chapter 1								
RBT Le	evels: 2								
Linked I	-2: Arrays: Declaration, Initialization, Operations, Linked Lists: Singly, Lists, Doubly Linked Lists, Operations on Linked Lists, Comparison of and Linked Lists, Problem-solving techniques using linear data structures.	8 Hrs							
Textbook1: Chapter 4, Reference Book1: Chapter 10									
RBT L	evels: 2, 3								
Backtrac Impleme using St	Module-3: Stack: Definition, Operations, Applications (e.g., Balanced Parentheses, Backtracking), Queue: Definition, Operations, Applications (e.g., Task Scheduling), Implementing Stacks and Queues using Arrays and Linked Lists, Solving Problems using Stacks and Queues, Hash Tables.								
Textbook1: Chapter 5, 6 Reference book1: Chapter 11									
RBT L	evels: 2,3,4								
Inorder, Graph T Spannin	Module-4: Trees: Binary Trees, Binary Search Trees (BST), Traversal Algorithms: 8 Hrs Inorder, Preorder, Postorder, Graphs: Representations (Adjacency Matrix and List), Graph Traversal Algorithms (BFS, DFS), Applications: Shortest Path and Minimum Spanning Tree.								
1 extibut	ok1: Chapter 7, 8 Reference Book1: Chapter 22								
RBT L	evels:2,3,4								
Sort, Qu Compar	-5: Sorting Algorithms: Bubble Sort, Selection Sort, Insertion Sort, Merge ick Sort, Searching Algorithms: Linear Search, Binary Search, Analysis and ison of Sorting and Searching Algorithms. ok1: Chapter 9 Reference Book1: Chapter 7, 8	8 Hrs							
	evels:2,3,4								
	IV. COURSE OUTCOMES								
CO1	Understand the core principles of data structures and algorithm design.								
CO2	Apply data structures such as arrays, linked lists, stacks, and queues to solve computational problems								
CO3	Analyze the efficiency of sorting, searching, and traversal algorithms with r and space complexity								
	CO4 Design and implement solutions using tree and graph data structures for real-world problems.								
CO4		l-world							

PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4
CO1	2	1		2				2	2	1		2
CO2	1	2	2	2					2	2	1	
CO3	2	2		1						2	2	2
CO4		2	2	2				2	1		2	2

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure F-CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure F-CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Data Structures and	Michael T. Goodrich	3e, 2022	Wiley
	Algorithms in Python			

VII(b): Reference Books: (Insert or delete rows as per requirement)

1	Introduction to	Thomas H. Cormen,	4e, 2022	MIT Press
	Algorithms	Charles E. Leiserson,		
		Ronald L. Rivest, and		
		Clifford Stein		

VII(c): Web links and Video Lectures (e-Resources):

- 1. FreeCodeCamp: Learn Data Structures and Algorithms (DSA) Full Course for Beginners: https://www.freecodecamp.org/news/learn-data-structures-and-algorithms/
- 2. MIT OpenCourseware Introduction to Algorithms (6.006): https://ocw.mit.edu/courses/6-006-introduction-to-algorithms-spring-2020/
- 3. Crash Course Data Structures: https://m.youtube.com/watch?v=jQqQpPMYPXs
- 4. Stanford CS106L: Programming Methodology: https://cs106l.stanford.edu/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

•Quizzes • Assignments• Seminar

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	II	Course Type:	PCC								
Course Tit	le: Ope	erating Systems	- Linux	x							
Course Cod	le:	25MCAT205		Credits: 3							
Teaching	Hours	/Week (L:T:P:S	6)	3:0:01	Total Hours:	40					
CIE Marks	s: 50	0 SEE Ma	rks:	50	Total Marks:	100					
SEE Type	e:		Γheory		Exam Hours:	3 Hrs					

I. Course Objectives:

- Understand the fundamental concepts and principles of operating systems, with a focus on Linux.
- Gain hands-on experience in working with Linux-based systems.
- Develop proficiency in system administration tasks and troubleshooting on Linux platforms.
- Explore advanced features of the Linux operating system, such as shell scripting and security.
- Acquire the skills necessary to deploy and manage Linux servers in a networked environment.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to

improve	the	stud	ent's ι	ınders	tandir	ıg.						
						III. (COUR	RSE C	ONT	ENT		
						I	II. Th	eory]	PART			
								•		erarchy, Basic S o System Admi		8 Hrs
Textboo	k1:	Cha	pter1	- 4								1
RBT Le	vel	s: 2										
Module-2: Advanced File Operations, Shell Scripting Basics, System Initialization and Services, Linux Networking Basics, Process Automation and Cron Jobs.								8 Hrs				
Textboo	k1	: Cha	apter	4 - 7								
RBT Le	vel	s: 2,3										
				•	-	-				ork Security, Se Control.	ecurity	8 Hrs
Textboo	k 2	: Cha	apter	8, 9, 1	0, 14							
RBT Le	vel	s:2,3,	4									
Module-4: Introduction to Linux Servers, Web and FTP Servers, Database Servers, Introduction to Virtualization, Managing Virtual Machines.								8 Hrs				
Texbool	k2:	Chap	oter 1	,6, 10,	, 11							1
RBT Le	vel	s:2,3,	4									
										ce Monitoring a		g 8 Hrs
Textboo	k 1	: Cha	apter	11-15	, Tex	book2	2: Cha	apter	15-19			
RBT L	eve	ls:2,3	,4									
					I	V. CO	OURS	E OU	TCO	MES		
CO1	Uı	nders	tand L	inux (OS fu	ndame	entals.					
CO2	A	dmini	ster L	inux s	ystem	s prof	icient	ly.				
CO3	De	evelo	p shel	l scrip	ts for	autom	nation.					
CO4	Co	onfigu	are an	d man	age L	inux s	ervers					
				V. CO)-PO-	PSO	MAP	PING VI.	(marl	x H=3; M=2; L=	=1)	
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4
0		1	1						1			
CO1 CO2	2	1 2	1						1	1		
CO2	2	1	1							2		
CO4	2	1	1							_	1	

VII. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

VIII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Linux	Wale Soyinka	2020,	McGraw-Hill
	Administration: A			Education
	Beginner's Guide			
2	Linux Bible,	Christopher Negus	2019	Wiley

VII(c): Web links and Video Lectures (e-Resources):

1. Crash Course for Beginners:

https://www.youtube.com/watch?v=ROjZy1WbCIA: https://www.youtube.com/watch?v=ROjZy1WbCIA

- 2. Linux Journey Resources: https://linuxjourney.com/: https://linuxjourney.com/:
- 3. NPTEL Introduction to Linux

https://nptel.ac.in/courses/117106113: https://nptel.ac.in/courses/117106113

4. FreeCodeCamp Linux Crash

Course: https://www.freecodecamp.org/news/tag/python/:https://www.freecodecamp.org/news/tag/python

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

• Quizzes • Assignments • Seminar

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Sem	ester:	II	Co	urse Type:			PCCL				
Course	e Title: D	SA I	Labo	ratory							
Cour	se Code:	3	25	MCAL206		Credits: 1					
Te	aching H	lours	/We	ek (L:T:P:S	S)	0:0:2:1	Total Hours:	40			
CIE	Marks:	5	0	SEE Ma	ırks:	50	Total Marks:	100			
SE	Е Туре:			Lat	orato	ory	Exam Hours:	3 Hrs			
I.	I. Course Objectives:										
II. Pra	Cultivate challenge ctical Co	probl the a es. ompo	em-s bility nent	olving skills y to analyze - Experime	and d	ugh algorithmic thin lesign efficient algor	ithms for various c	omputational			
1	Array integer		•	ion: Write a	prog	ram to find the secon	nd largest element	in an unsorted			
2		l List		ration: Impl	ement	t a function to detect	and remove a cycl	e in a singly			
3	parentl	heses		_		-based program to cl	_				
4	Queue dequeu				ate a c	ircular queue with f	ixed size that suppo	orts enqueue and			
5				cs: Develop as the key.	a sim	ple hash table to sto	re and retrieve stud	lent records			
6	Binary	Sear	ch T	ree: Write a	progr	ram to find the heigh	t of a binary search	n tree.			
7	Graph	Trav	ersal	Implement	depth	n-first search (DFS)	algorithm to traver	se a given graph.			
8	Sorting	g Alg	orith	m: Write a բ	orogra	m to implement the	bubble sort algorit	hm and count			

	the number of swaps performed.
9	Binary Search: Develop a program to perform binary search on a sorted array and return the index of a target element.
10	Recursion: Create a recursive function to calculate the factorial of a given number.
11	String Manipulation: Write a program to reverse a string using stack data structure.
12	Memory Management: Implement a program to merge two sorted arrays into a single sorted array with minimal extra space.

III. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

_													
				IV.	COUR	SE OU	TCOM	ES					
CO1	Recognize and describe the core principles of basic data structures and algorithmic concepts.												
CO2	Apply appropriate data structure techniques to solve programming problems efficiently.												
CO3		•	computa		complex	city and	perform	nance ch	naracteri	stics of	differen	t	
CO4	Com	•	d select	optimal	data str	ructure i	mpleme	entation	s for spe	cific co	mputatio	onal	
		V	. CO-P	O-PSO	MAPP	ING (n	nark H=	3; M=2;	; L=1)				
PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4	
CO1	2			1					2				
CO2		2	1							2			
CO3	2			2							2		

CO4		2		2							1
				VI. Ass	essmen	t Detail	s (CIE	& SEE)		
General	Rule	s:									
Assessm	ent D	etails (both CI	E and S	SEE):						
Refer to	Anne	exure -C	CIE & S	SEE Gu	idelines	S.					
Semeste	Semester End Examination (SEE):										
Refer to	Refer to Annexure -CIE & SEE Guidelines.										

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications

Semester:	II	Course Type:		•	PCCL	
Course Title: C	bject	Oriented Progr	ramm	ing Laboratory		
Course Code:		25MCAL207			Credits:	1
Teaching Hour	s/Wee	ek (L:T:P:S)		0:0:2:1	Total Hours:	40
CIE Marks:	50	SEE Ma	rks:	50	100	
SEE Type:		Lab	orator	ry	Exam Hours:	3 Hrs

I. Course Objectives:

- Understand the principles of object-oriented design and apply them effectively to design classes and objects
- Demonstrate a clear understanding of different class relationships such as association, aggregation, and composition.
- Apply SOLID principles (Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation, Dependency Inversion) and design Patterns to create modular and maintainable code

II. Practical Component - Experiments Create a Java program demonstrating the concept of classes and objects. 1 2 Implement a Java program showcasing constructors and destructors 3 Develop a Java program illustrating class methods and instance methods 4 Construct a Java program to demonstrate class relationships: association, aggregation, and composition. 5 Implement a Java program showcasing inheritance and method overriding 6 Design a Java program demonstrating polymorphism at runtime Construct a Java program using abstract classes and interfaces. 8 Develop a Java program applying SOLID principles for better design Design a Java program implementing the Singleton design pattern 10 Construct a Java program using the Factory design pattern 11 Implement a Java program illustrating the Observer design pattern 12 Develop a Java program applying generics for a generic class and method.

III. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters student's Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the student's understanding.

	IV. COURSE OUTCOMES													
CO1	Ir	Implement object-oriented programs in Java with clarity and efficiency.												
CO2	D	Design effective object-oriented solutions using classes and objects												
CO3	U	se des	sign pa	tterns	(Singl	leton,	Factor	y, Obs	erver) to sol	ve program	ming challeng	ges		
CO4	CO4 Gain proficiency in advanced concepts like generics, reflection, and effective exception handling.									eption				
			,	v. cc	-PO-	PSO I	MAPI	PING	(mark H=3;	M=2; L=1	1)			
PO/PS	1	2	3	4	5	6	7	8	S1	S2	S3	S4		
О														
CO1	2	2	1						1					
CO2	2 1 2													
CO3	2	1								2				
CO4	2	2									2			

VI. Assessment Details (CIE & SEE)

General Rules:

Assessment Details (both CIE and SEE):

Refer to Annexure -CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure -CIE & SEE Guidelines.

STI Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology GGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Master of Computer Applications (MCA)

Semester:	II	C	Course Type:							
Course Title: Dat										
Course Code:		25N	MCAAE21	Credits: 1						
Teaching Hours/	Week (L:T:P	?: S)		0:1:1:1	Total Hours:	40			
CIE Marks	s: 5	0	SEE Mar	ks:	50	100				
SEE Type	2:		Theory 1	n	Exam Hours:					

I. Course Objectives:

- To gain a foundational understanding of Power BI, including Power BI Desktop and the Power BI website.
- To create various data visualizations, including stacked and clustered bar charts, waterfall charts, scatter plots, filled maps, and 3D maps.
- To prepare and transform data using Power Query for acquisition, grouping, binning, merging, joining, and transformation.
- To design and build interactive reports and dashboards, utilizing bookmarks, buttons, and KPIs for enhanced user interactivity.
- To perform advanced data analysis with DAX, creating measures, calculated columns, and using functions like SUMX, IF, FILTER, Dates In Period, Dates Between, and Week To Date.

II. Teaching-Learning Process (General Instructions):

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analysed information rather than simply recall it.
- 6. Introduce Topics in manifold representations.

- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

III(a). Theory PART

Module-1: Power BI Essentials

8 Hrs

Pre-requisites (Self Learning)Basic understanding of data analysis concepts and familiarity with spreadsheet software like Excel. Additionally, knowledge of SQL for data querying and manipulation would be beneficial for advanced data analysis tasks in POWER BI.

Module 1: Utilize POWER BI Desktop and its web counterpart, acquiring data from various sources including CSV files and folders. Master data transformation with Power Query, create visualizations, and distinguish between dashboards and reports for effective data presentation.

Textbook1: Chapter 1,2

RBT Levels: L1, L2, L3, L4

Module 2: Visualization in POWERBI

8 Hrs

Advanced visualization techniques in POWER BI, including various chart types, map visualizations, and interactive features like slicers, bookmarks, and buttons. Additionally, explore data grouping, binning, and Key Performance Indicators (KPIs) for effective data analysis and presentation.

Textbook1: Chapter 3,4

RBT Levels: L1, L2, L3, L4

Module-3:Basic Data Transformation in Power BI

8 Hrs

Power Query basics, data preparation, and importing data from Excel and Azure SQL Database. Understand the difference between reference vs duplicate and append vs merge in POWER BI for effective data transformation.

Textbook1: Chapter 4,5

RBT Levels: L1, L2, L3, L4

Module-4: Advanced Data Transformation in Power BI

8 Hrs

Advanced data manipulation techniques in POWER BI, including merge join types, pivot operations, grouping, exception reporting, flawless date conversion, and numeric division. These skills enhance ability to handle diverse data scenarios efficiently.

Textbook1:: Chapter 5,6

RBT Levels: L1, L2, L3, L4

Module-5: Power BI Modeling And DAX

8 Hrs

Advanced data modelling and calculation techniques in POWER BI, including sorting, data preparation, relationship management, and using measures versus calculated columns. Explore functions like SUM vs SUMX, IF and FILTER, and address DAX time zone issues, enhancing data analysis skills.

Textbook 1:: Chapter 6,7,8

RBT Levels: L2 & L3

IV. COURSE OUTCOMES

Apply Power BI Desktop and its web counterpart to acquire, prepare, and transform data from various sources, including CSV files and Azure SQL Database, using Power Query.

CO2 Apply advanced visualization techniques, including various chart types, map visualizations, and interactive features like slicers, bookmarks, and buttons, for effective data presentation.

CO3	Implement data modeling techniques, including designing star schemas, managing relationships, and differentiating between measures and calculated columns.
C 03	relationships, and differentiating between measures and calculated columns.
CO4	Perform advanced data analysis and calculations with DAX, using functions like SUM vs
CO4	SUMX, IF, FILTER, and handling DAX time zone issues.
CO5	Develop an interactive reports and dashboards, publish reports, and pin them to dashboards in
COS	the PowerBI.com service, utilizing KPIs for performance tracking.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	S1	S2	S3	S4
CO1	2	2	1						1			
CO2	2	1								2		
CO3	2	1								2		
CO4	2	2									2	
CO5		1	1								1	

VI. Assessment Details (CIE & SEE)

General Rules:

Continuous Internal Evaluation (CIE):

Refer to Annexure-CIE & SEE Guidelines.

Semester End Examination (SEE):

Refer to Annexure-CIE & SEE Guidelines.

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	Power BI Cookbook:			
	Creating Business	Brett Powell	Second edition 2018	Packt Publishing
	Intelligence Solutions of			
	Analytical Data Models,			
	Reports, and Dashboards			
2.	Mastering Microsoft			Packt Publishing
	Power BI: Expert	Brett Powell	Third Edition 2020	
	techniques for effective			
	data analytics and			
	business intelligence			
3.	Power BI 10-Day Pass:			
	A Practical Guide to	Paul Turley	First Edition 2019	Independently
	Building Enterprise Data	_		published
	Models			
VII(b):	Reference Books:			
1	M is for (Data) Monkey:	Ken Puls and Miguel	First Edition 2015	Holy Macro! Books
-	A Guide to the M	Escobar		
	Language in Excel			
	Power Query			
2	Analyzing Data with	Alberto Ferrari and Marco	Second Edition 2017	Microsoft Press
_	Power BI and Power	Russo		
	Pivot for Excel			

VII(c): Web links and Video Lectures (e-Resources):

- [Microsoft Power BI Official Website](https://powerbi.microsoft.com/)
- [Power BI Tips](https://powerbi.tips/)
- [Guy in a Cube](https://guyinacube.com/)
- [Power BI Blog](https://powerbi.microsoft.com/en-us/blog/)

[Enterprise DNA](https://www.youtube.com/channel/UCiNm8KMJWggC4iRrxtnkovA)

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Assignments, Quizzes and Seminar, Mini projects