

| Jai Sri Gurudev | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Semester:	I	Course	e Type:	ASC					
	Course Title: Differential Calculus, Equations and Linear Algebra								
Course Coo	le:	25MA	AT11C	Credits: 4					
Teachi	ing Ho	urs/Wee	ek (L: T:P:S)	3:2:0:1	Total Hours:	50			
CIE Marks	: 50	0 5	SEE Marks:	50	Total Marks:	100			
SEE Type	: The	ory			Exam Hours:	3			

I. Course Objectives

- 1. To facilitate the students with a foundation of differential calculus.
- 2. Apply differential equations to model and solve real-world problems in science and engineering
- 3. Develop the knowledge of Linear Algebra referring to matrices.

II. Teaching-Learning Process (General Instructions)

- 1. In addition to the traditional lecture method, innovative teaching methods shall be adopted.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Grading assignments, presentations, practical implementation of the problem, quizzes and documenting students' progress.
- 4. Encourage the students for group learning to improve their creative and analytical skills.

Pre-requisites

- 1. Trigonometric formulae.
- 2. Differentiation, Integration and properties.

III. COURSE CONTENT

Module-1: Polar Curves and Curvature

10 Hours

Polar coordinates, Polar curves, angle between the radius vector and the tangent, angle between two curves. Pedal equations. Curvature and radius of curvature - Cartesian, and pedal forms. Implementation using MAT LAB.

Self study: Radius of curvature in polar form and parametric form.

RBT Levels: L1, L2 and L3

Module-2: Series Expansion, Indeterminate Forms and Multivariable Calculus

10 Hours

Statement and problems on Maclaurin's series expansion for one variable. Indeterminate forms - (1^{∞} , 0^{0} and ∞^{0}), L'Hospital's rulePartial differentiation: Definition total derivative - differentiation of composite functions, Jacobian, Maxima and minima for the function of two variables. Implementation using MAT LAB.

Self-Study: Statement and problems on Taylor's series expansion for one variable.

RBT Levels: L1, L2 and L3

Module-3: Ordinary Differential Equations of First Order first degree

10 Hours

Bernoulli's differential equation. Exact and reducible to exact differential equations with integrating factors $^1/_N \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}\right)$ and $^1/_M \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)$. Orthogonal trajectories (cartesian), Study of Law of natural growth and decay. Implementation using MAT LAB.

Self-study: Linear differential equation, Orthogonal trajectories in polar form

RBT Levels: L1, L2 and L3

Module-4: Ordinary Differential Equations of Higher Order

10 Hours

Higher-order linear ordinary differential equations with constant coefficients, homogeneous and non-homogeneous equations (e^{ax}, sin(ax+b), cos(ax+b), xⁿ only), Cauchy's and Legendre's homogeneous differential equations. Applications: Solving governing differential equations of Mass Spring. Implementation using MAT LAB.

Self-study: Method of variation of parameters

RBT Levels: L1, L2 and L3

Module-5: Linear Algebra

10 Hours

Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations -Approximate solution by Gauss-Seidel method. Eigenvalues and Eigenvectors, Rayleigh's power method to find the dominant Eigenvalue and Eigenvector. Applications: Traffic flow. Implementation using MAT LAB

Self-study: Gauss-elimination method.

RBT Levels: L1, L2 and L3

IV. COURSE OUTCOMES

- **CO1** Apply the knowledge of single and multivariable calculus to evaluate the problems arising in engineering discipline
- Apply methods to solve ordinary differential equations of first and higher order arising in engineering problems.
- Apply the principles of linear algebra to solve systems of linear equations, eigenvalues and eigenvectors, real-world problems such as traffic flow.
- **CO4** Employ MATLAB techniques for analytical solutions, and graphical visualization of differential calculus and linear algebra concepts in engineering.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

	PO/PS	1	2	3	4	5	6	7	8	9	10	11	S 1	S2	S3	S4
	O															
Ī	CO1	3	2			1				1		1				
	CO2	3	2			1				1		1				
	CO3	3	2			1				1		1				
Ī	CO4	3	2			1				1		1				

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Name of the publisher	Edition and Year
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th Ed., 2018.
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10th Ed., 2018

3	Linear Algebra and its Applications	Gilbert Strang	Cengage Publications	4th Ed., 2022					
VII(b	VII(b): Reference Books:								
1	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill Education	11th Ed., 2017					
2	Engineering Mathematics	Srimanta Pal & Subodh C.Bhunia	Oxford University	3rd Ed., 2016					
3	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	10th Ed., 2022.					
4	Higher Engineering Mathematics	H. K. Dass and Er. Rajnish Verma	S. Chand Publication	3rd Ed., 2014					
5	Linear Algebra and its Applications	David C Lay	Pearson Publishers	4th Ed., 2018					

VII(c): Web links and Video Lectures (e-Resources):

- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program
- https://nptel.ac.in/courses/111106135
- https://nptel.ac.in/courses/111105160
- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/

VIII: Activity Based Learning

Assignments, quiz and presentation.