

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology RGS Health and Education City. Dr. Vichnus and have Road Kenneri Bengalum 560060

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

II **ASC** Semester: **Course Type:** Course Title: Calculus, Numerical Techniques & Laplace Transforms 25MAT21B 4 **Course Code: Credits: Total Hours:** 50 (40L+10T) Teaching Hours/Week (L:T:P:S) 3:2:0:1 **CIE Marks:** 50 **SEE Marks:** 50 **Total Marks:** 100 Theory **Exam Hours:** 3 **SEE Type:**

I. Course Objectives

- 1. To facilitate the students with a foundation of Integral and vector calculus
- 2. Apply the knowledge of Numerical methods to develop computer algorithms.
- 3. Develop knowledge of solving problems in engineering application using Laplace transforms.
- 4. To interpret and visualize mathematical solutions through MATLAB

II. Teaching-Learning Process (General Instructions)

- 1. In addition to the traditional lecture method, innovative teaching methods shall be adopted.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Grading assignments, presentations, practical implementation of the problem, quizzes and documenting students' progress.
- 4. Encourage the students for group learning to improve their creative and analytical skills.

Pre-requisites

- 1. Trigonometric formulae.
- 2. Differentiation, Integration and properties.

III. COURSE CONTENT

Module-1: Integral Calculus and its Applications

10 Hours

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals over the region, changing to polar coordinates. Area and volume using double integrals.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Implementation using MATLAB

Self- study: Evaluation of double integrals by changing the order of integration

RBT Levels: L1, L2 and L3

Module-2: Vector Calculus and its Applications

10 Hours

Vector Differentiation: Scalar and vector fields, gradient of a scalar field, directional derivatives, divergence of a vector field, solenoidal vector, curl of a vector field, irrotational vector, physical interpretation of gradient, divergence and curl and scalar potential.

Vector Integration: Line integrals, Statement of Green's theorem and problems (without verification). Implementation using MATLAB

Self-Study: work done by a force and flux, Statements of Stoke's theorem and problems

RBT Levels: L1, L2 and L3

Module-3: Numerical Methods-1

10 Hours

Solution of algebraic and transcendental equations: Newton-Raphson method.

Finite Differences and Interpolation: Forward and backward differences, Interpolation, Newton forward and backward interpolation formulae, and Lagrange's interpolation formula.

Numerical Integration: Simpson's 1/3rd rule and Simpson's 3/8th rule. Implementation using MATLAB

Self-Study: Regula-Falsi method, Newton's divided difference interpolation formula, Weddle's rule

RBT Levels: L1, L2 and L3

Module-4: Numerical Methods-2

10 Hours

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor corrector method. Implementation using MATLAB

Self-study: Adam-Bashforth predictor-corrector method

RBT Levels: L1, L2 and L3

Module-5: Laplace Transform

10 Hours

Existence and Uniqueness of Laplace transform, transforms of elementary functions, Properties of Laplace transforms, Problems on Laplace's Transform of $e^{at}f(t)$, $t^nf(t)$, $\frac{f(t)}{t}$. Laplace transforms of Periodic functions-problems.

Inverse Laplace Transforms: Definition, properties, evaluation of inverse Laplace transform (using only partial fraction), and applications to solve ordinary differential equations. Implementation using MATLAB

Self-study: Heaviside function, evaluation of inverse Laplace transform by completing square

RBT Levels: L1, L2 and L3

IV. COURSE OUTCOMES

- Apply the concepts of integral calculus and vector calculus to model and solve problems in engineering applications such as area, volume.
- Apply appropriate numerical methods to find approximate solutions of algebraic, transcendental, and ordinary differential equations and to perform interpolation and numerical integration in engineering contexts
- Apply Laplace transform techniques for time domain, wave forms, periodic functions and solving differential equations.
- CO4 Employ MATLAB techniques for analytical solutions of calculus, Numerical techniques and Laplace Transforms concepts in engineering.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

P	O/PSC	1	2	3	4	5	6	7	8	9	10	11	S1	S2	S3	S4
	CO1	3	2			1				1		1				
	CO2	3	2			1				1		1				
	CO3	3	2			1				1		1				
(CO4	3	2			1				1		1				

VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Name of the publisher	Edition and Year
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th Ed., 2021
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Ed., 2018
3	Numerical Methods for Scientific and Engineering Computation	M.K. Jain, S.R.K. Iyengar and R.K. Jain	New Age International Publishers	8thEd., 2022.

VII(b): Reference Books:

1	Higher Engineering Mathematics	B.V.Ramana	Tata Mc Graw-Hill	11 th Ed., 2017	
2	Higher Engineering Mathematics	H. K. Dass and Er. Rajnish Verma	S. Chand Publication,	3 rd Ed., 2014.	
3	Engineering Mathematics	Srimantha Pal & Subodh C Bhunia	Oxford Publication	3 rd Ed., 2016.	
4	Applied Numerical Methods with Matlab for Engineers and Scientists	Steven V. Chapra and Raymond P. Canale	McGraw-Hill	3rd Ed., 2011.	
5	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	10 th Ed., 2022	
6	Introductory Methods of Numerical Analysis	S.S. Sastry	PHI Learning Private Limited	5th Ed., 2012.	

VII (c): Web links and Video Lectures (e-Resources):

- 1. http://academicearth.org/
- 2. VTU e-Shikshana Program
- 3. VTU EDUSAT Program
- 4. https://nptel.ac.in/courses/111105160
- 5. https://nptel.ac.in/courses/127106019
- 6. https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/
- 7. https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/pages/syllabus/

VIII: Activity Based Learning

Assignments, quiz and presentation.