

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Semester:	I/II	(Course Type:	IASC				
Course Title: Applied Physics for Advanced Materials and Sensors								
Course Code	:	25PH	I12B/22B		Credits:	4		
Teaching Ho	urs/Week	(L: T:	P:S)	3:0:2:1	Total Hours:	40+12lab slots		
CIE Marks:	50)	SEE Marks:	50	Total Marks:	100		
SEE Type:			Theory		Exam Hours: 3			
I. Course O	bjectives:							
☐ To study th	ne principle	es of qu	antum mechani	cs.				
			rties of materia					
					ering applications.			
					analyse the experin	nental results.		
II. Teaching	g-Learning	g Proce	ss (General In	structions):				
			in teaching lear	rning methods a	re			
1. Chal	k and Talk							
2. Blen	ded Mode	of Lear	ning					
3. Simu	ılations, Int	teractiv	e Simulations a	and Animations				
4. Smai	t Classroo	m						
5. Self-	learning us	ing AI	tools					
6. Activity based and experiential learning								
7. Models and working model								
8. Lab Experiment videos								
III. COURSE CONTENT								
III(a). Theory part								
Module-1: (Quantum I	Mechai	nics			8 Hours		

de Broglie Hypothesis, Heisenberg's Uncertainty Principle and its application (Qualitative: Broadening of Spectral Lines), Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation (Derivation), Physical significance of a wave function and Born Interpretation, Expectation value and its physical significance, Eigen functions and Eigen values, Particle inside one dimensional infinite potential well, Role of higher dimensions (Qualitative), Waveforms and Probabilities, Particle inside a finite potential well and quantum tunnelling, Numerical Problems (de Broglie wavelength, HUP, Probability of finding the particle and Energy Eigen values).

Text Books: 1, 2 & 3 Reference Books: 1, 2 & 3

Pre-requisites/Self Learning: Dual nature of light and matter waves

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying.

Module-2: Electrical Properties of Materials

8 Hours

Introduction to classical free electron theory, Failures of classical free electron theory, Mechanisms of electron scattering in solids, Mathiesen's rule, Assumptions of Quantum free electron theory, Density of states, Fermi energy, Fermi velocity, Fermi temperature, Fermi factor, Variation of Fermi factor with temperature and energy, Expression for carrier concentration (Only expression), Mention the expression for electron and hole concentration in extrinsic semiconductor, Fermi level for intrinsic (with derivation) and extrinsic semiconductor (no derivation), Hall effect, Numerical Problems (Fermi factor, Fermi temperature, Fermi velocity and Hall co-efficient).

Text Books: 1, 2 & 4 Reference Books: 1, 3

Pre-requisites/Self Learning: Free electron theory

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying,

Module-3: Superconductivity

8 Hours

Zero resistance state, Persistent current, Meissner effect, Critical temperature, Critical current (Silsbee Effect), Critical field, Formation of Cooper pairs - Mediation of phonons, Two-fluid model, BCS Theory - Phase coherent state, Limitations of BCS theory, examples of systems with low and high electron-phonon coupling, Type-I and Type-II superconductors, Formation of Vortices, Explanation for upper critical field, Josephson junction, Flux quantization, DC and AC SQUID, Charge Qubit, Numerical Problems (Critical field).

Text Books: 1, 2 & 4 Reference Books: 1, 3

Pre-requisites/Self Learning: Temperature dependency of resistivity

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying,

Module-4: Photonics 8 Hours

Interaction of radiation with matter – Einstein's A and B coefficients, Prerequisites for lasing actions, Types of LASER – CO₂ LASER, Use of attenuators for single photon sources, Optical modulators – Pockel's effect, Kerr effect, Photo detectors – Photomultiplier tube, Single Photon Avalanche Diode, Optical fiber, Derivation of Numerical aperture, V–number, Number of modes, losses in optical fiber, Mach-Zehnder interferometer, Numerical problems (Ratio of population, Number of Photons (N), Numerical aperture, V–number and attenuation co-efficient).

Text Books: 1, 2 Reference Books: 4, 5

Pre-requisites/Self Learning: TIR, Properties and applications of LASER

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying.

Module-5: Semiconductor devices and Sensors

8 Hours

Direct and indirect band gap, Band gap engineering, Zener Diode, LED, Photo Diode, Photo Transistor, Light dependent resistor, Resistance temperature detectors (high, medium and low), Sensing mechanisms, Piezo electric Sensors, Metal Oxide Semiconductor (MOS) sensors, Hall sensor, Superconducting Nanowire Single Photon Detector, Numerical Problems.

Text Book: 5 Reference Books: 6

Pre-requisites/Self Learning: Intrinsic and extrinsic semiconductors.

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying.

	III (b). Practical part						
Sl. No.	Experiments						
1	Determination of wavelength of LASER using Diffraction Grating.						
2	Determination of acceptance angle and numerical aperture of the given Optical Fiber.						
3	Determination of dielectric constant of the material of capacitor by Charging and Discharging method.						
4	Study the Characteristics of a Photodiode and to determine the power responsivity /Verification of inverse square law of light.						
5	Determination of Plank's Constant using LEDs.						
6	Determination of Fermi Energy of Copper.						
7	Black-Box Experiment						
8	I-V Characteristics of a Bipolar Junction Transistor.						
9	Resonance in LCR circuit						
10	Energy Gap of a Semiconductor						
11	Construction and Analyzing Electronic circuits (Exp eyes Simulator/circuit lab)						
12	Determination of resistivity of a semiconductor by Four Probe Method						

Instructions for conduction of practical part:

Any Ten Experiments must be completed from the list of experiments.

Each experiment to be evaluated for conduction with observation sheet and record write up. Rubrics for the evaluation of the write-up for experiments designed by the faculty who is handling the laboratory session and is made known to students at the beginning of the practical session.

- Record should contain all the specified experiments in the syllabus, and each experiment writeup will be evaluated for 50 marks.
- •Average marks scored by the students from all the experiments are considered.
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct 01 test for 50 marks; test shall be conducted after the completion of prescribed experiments.
- In each test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 80% and the rest 20% for viva-voce.

IV COURSE OUTCOMES

	IV. COURSE OUTCOMES
CO1	Summarize the fundamental principles of Quantum Mechanics.
CO2	Analyze the behaviour of electrical conductivity in metals, semiconductors and superconductors
CO3	Interpret the interaction of radiation with matter and the operational principle of photonic devices, semiconductor devices and sensors.
CO4	Conduct the experiments and analyze the data to design the solution of engineering problems through critical thinking and collaborations.
	V. CO-PO-PSO MAPPING (Mark H=3; M=2; L=1)

PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	S1	S2	S3	S4
0																
CO1	3	3			2							2				
CO2	3	3	1		2							2				
CO3	3	2		3	2							2				
CO4	3	3	3	3	3	2		1	2	2		2				

VI. Assessment Details (CIE & SEE)

General Rules: Refer Appendix section 2

Continuous Internal Evaluation (CIE): Refer Appendix section 2

semester End Examination (SEE): Refer Appendix section 2

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	A Textbook of Engineering Physics	M. N. Avadhanulu and P.G. Kshirsagar	10 th revised Ed,	S. Chand. & Company Ltd, New Delhi
2.	Engineering Physics	Satyendra Sharma and Jyotsna Sharma	2018	Pearson
3.	Engineering Physics	S L Kakani and Shubra Kakani	3rd Edition, 2020	CBS Publishers and Distributers Pvt. Ltd.
4.	Solid State Physics	S. O. Pillai	8 th Ed; 2018	New Age International
5.	Basic Electronics	B L Theraja	Multi-color Edition, 2006	S Chand,

VII(b): Reference Books:

1.	Engineering Physics	S P Basvaraju	CBCS edition	Subhas Publications	
2.	Concepts of Modern Physics	Arthur Beiser	6 th Ed; 2006	Tata McGraw Hill Edu Pvt Ltd- New Delhi	
3.	Engineering physics	G. Aruldhas	1st Ed;2010	Eastern Economy Edition	
4.	Engineering Physics	R K Guptha and R K Gaur	8 th Revised- 2001	Dhanpat Rai Publications	
5.	Lasers and Non-Linear Optics	B B Laud	2011 edition	New age international	
6.	Engineering Physics	S Mani Naidu	Fourteenth Impression, 2024	Pearson	
7.	Applied Physics Lab Manual.	Anoop Sing Yadav	1 st Ed	Vayu Education of India	
8.	Applied Physics for engineers	P K Diwan	2014	Wiley Publications	
9.	LASERS Principles, Types and Applications	K.R. Nambiar	1 st Ed; 2004	New Age International Publishers	

10.	Fundamentals of Fibre Optics in Telecommunication & Sensor Systems	B.P. Pal	2 nd Ed; 2015	New Age International Publishers
-----	--	----------	--------------------------	--

VII(c): Web links and Video Lectures (e-Resources):

Mention the links of the online resources, video materials, etc.

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. NPTEL Physics: Introductory Quantum Mechanics (NOC): https://archive.nptel.ac.in/courses/115/104/115104096
- 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)
- 5. Playlist Introduction Video: https://www.youtube.com/watch?v=SHoGV-sezNI
- 6. Full playlist available via the YouTube channel description or archive link.
- 7. Concepts in Magnetism and Superconductivity NOC (IIT Kharagpur)Series start (Lecture 1): https://digimat.in/nptel/courses/video/115105131/L01.html
- 8. Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12 cover: Direct video link (start Lecture 03): https://nptel.ac.in/courses/108106135/03
- 9. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy) Direct video link (start relevant lecture): https://nptel.ac.in/courses/108108174/05
- 10. Sensors and Actuators NPTEL (IISc Bangalore, Prof. Hardik J. Pandya) Lecture 1 Introduction to Sensors, Transducers & Actuators, incl. Hall, RTDs, Thermistors https://digimat.in/nptel/courses/video/108108147/L01.html
- 11. Smart Sensors NPTEL Lecture 34 Covers various sensors including gas, pressure, MOS sensors, photodetectors like SNSPD https://www.youtube.com/watch?v=oRydUfgMdgA
- 12. https://phet.colorado.edu
- 13. https://virtuallabs.merlot.org/vl_physics.html
- 14. https://www.myphysicslab.com

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Seminar, assignments, quiz, case studies, self-study activities, group discussions