

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Approved by AICTE, New Delhi.

Semester:	II Course Type:			ASC	ASC				
Course Title: Advanced Calculus and Numerical methods									
Course Code	e:	25MAT21C		Credits:	4				
Teaching Hours/Week (L:T:P:S)			3:2:0:1	Total Hours:	50(40L+10T)				
CIE Marks:	50	SEE Mai	rks: 50	Total Marks:	100				
SEE Type:		Т	heory	Exam Hours:	3				

I. Course Objectives

- 1. To facilitate the students with a foundation of differential calculus.
- 1. Apply differential equations to model and solve real-world problems in science and engineering
- 2. Apply the knowledge of Numerical methods to develop computer algorithms.

II. Teaching-Learning Process (General Instructions)

- 1. In addition to the traditional lecture method, innovative teaching methods shall be adopted.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Grading assignments, presentations, practical implementation of the problem, quizzes and documenting students' progress.
- 4. Encourage the students for group learning to improve their creative and analytical skills.

Pre-requisites

- 1. Trigonometric formulae.
- 2. Differentiation, Integration and properties.

III. COURSE CONTENT

Module-1: Integral Calculus

10 Hours

Multiple Integrals: Evaluation of double and triple integrals, changing into polar coordinates. Applications to find Area and volume by double integral.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Implementation using MAT LAB.

Self study: Evaluation of double integrals by change of order of integration,

RBT Levels: L1, L2 and L3

Module-2: Partial Differential Equations (PDE)

10 Hours

Formation of PDEs by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Application of PDE: Derivation of one-dimensional heat equation and wave equation. Solution of Separation of variables. Implementation using MAT LAB.

Self-Study: Homogeneous PDEs involving derivatives with respect to one independent variable only

RBT Levels: L1, L2 and L3

Module-3: Vector Calculus 10 Hours

Scalar and vector fields. Gradient, directional derivative, divergence and curl - physical interpretation, solenoidal vector fields, irrotational vector fields and scalar potential. Vector Integration: Line integrals, work done by a force and flux, Statements of Green's theorem problems (No verification problems). Implementation using MAT LAB.

Self-study: Statements of Stoke's theorem.

RBT Levels: L1, L2 and L3

Module-4: Numerical Methods - 1

10 Hours

Solution of algebraic and transcendental equations: Newton-Raphson methods, problems. Interpolation: Finite differences, Interpolation using Newton's forward and backward difference formulae and Lagrange's interpolation formula. Numerical integration: Simpson's 1/3rd and 3/8th rules. Implementation using MAT LAB.

Self-study: Regula-Falsi method and Weddle's Rule, Newton's divided difference formula

RBT Levels: L1, L2 and L3

Module-5: Numerical Methods – 2

10 Hours

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order, Milne's predictor and corrector method. Implementation using MAT LAB.

Self-study: Adams-Bashforth predictor-corrector method

RBT Levels: L1, L2 and L3

IV. COURSE OUTCOMES

- Apply the concepts of integral calculus and vector calculus to model and solve problems in engineering applications such as area, volume.
- CO2 Interpret and solve PDEs arising from physical phenomena in engineering and science, including heat conduction, wave propagation, and fluid dynamics.
- CO3 Analyze vector fields and understand their properties such as conservative fields and potential functions.
- Apply appropriate numerical methods to find approximate solutions of algebraic, transcendental, and ordinary differential equations and to perform interpolation and numerical integration in engineering contexts.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PS	1	2	3	4	5	6	7	8	9	10	11	S1	S2	S3	S4	
O																
CO1	3	2			1				1		1					
CO2	3	2			1				1		1					
CO3	3	2			1				1		1					
CO4	3	2			1				1		1					

VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

VII. Learning Resources										
VII(a): Textbooks:										
Sl. No.	Title of the Book	Name of the author	Name of the publisher	Edition and Year						
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44 th Ed., 2018.						
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10th Ed., 2018						
3	Numerical Methods for Scientific and Engineering Computation	M.K. Jain, S.R.K. Iyengar and R.K. Jain	New Age International Publishers	8thEd., 2022						
VII(b): Reference Books:										
1	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill Education	11th Ed., 2017						
2	Engineering Mathematics	Srimanta Pal & Subodh C.Bhunia	Oxford University	3rd Ed., 2016						
3	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	10th Ed., 2022.						
4	Higher Engineering Mathematics	H. K. Dass and Er. Rajnish Verma	S. Chand Publication	3rd Ed., 2014						
5	Linear Algebra and its Applications	David C Lay	Pearson Publishers	4th Ed., 2018						

VII(c): Web links and Video Lectures (e-Resources):

- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program
- https://nptel.ac.in/courses/111105160
- https://nptel.ac.in/courses/127106019
- https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/
- https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring

2012/pages/syllabus/

VIII: Activity Based Learning

Assignments, quiz and presentation.