

# Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

| Semester:                                                             | I/II                               | Course Ty | pe:    | ESC              |              |     |  |  |
|-----------------------------------------------------------------------|------------------------------------|-----------|--------|------------------|--------------|-----|--|--|
| Course Title: Introduction to Electronics & Communication Engineering |                                    |           |        |                  |              |     |  |  |
| Course Code                                                           | Course Code: 25ECT13/23 Credits: 3 |           |        |                  |              |     |  |  |
| Teaching Hours/Week (L: T:P:S)                                        |                                    |           | )      | 3:0:0:1          | Total Hours: | 40  |  |  |
| CIE Mark                                                              | s: 5                               | SEE SEE   | Marks: | 50               | Total Marks: | 100 |  |  |
| SEE Typ                                                               | e:                                 |           | Theory | ry Exam Hours: 3 |              |     |  |  |
| I Course Objectives                                                   |                                    |           |        |                  |              |     |  |  |

## **I. Course Objectives**

This course will enable students:

- To understand the construction, operation and characteristics of Semiconductor Diodes & BJT.
- To demonstrate the operation and applications of Op-Amp
- To design basic digital circuits using logic gates.
- To explain the basics of communication systems, WLAN and Bluetooth.
- To Interpret the structure and functionality of embedded systems.

## **II. Teaching-Learning Process (General Instructions)**

- Chalk and talk method.
- Power point presentation / keynotes
- Videos
- Virtual Labs
- Demonstration of components /circuits
- Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyse information rather than simply recall it.
- Case-based teaching
- Role play
- Project/activity based learning

#### III. COURSE CONTENT

## Module-1 Semiconductor Diodes and its Applications 8 Hours

Semiconductor diode, Ideal Versus Practical, Resistance Level, Diode Equivalent Circuits, Zener diodes, Load Line Analysis.

Half Wave Rectification, Full Wave Rectification, Capacitor filter.

Textbook-1: Chapter - 1, 2, 15: Sections: 1.6,1.7,1.8,1.9,1.15, 2.2,2.6,2.7,2.10, 15.3

RBT Levels: L1, L2, L3

## **Module-2 BJT & Operational Amplifier**

8 Hours

Introduction, Transistor construction, Transistor Operation, Common Base, Common Emitter, Common Collector Configuration

Operational Amplifier: Operational Amplifier Parameters, Operational Amplifier Characteristics, Operational Amplifier Configurations, Operational Amplifier Circuits.

Textbook 1: Chapter - 3, Sections 3.1,3.2,3.3,3.4,3.5,3.6,3.7

Textbook 2: Chapter 8, Page No:165-169,171-175

RBT Levels: L1, L2, L3

## **Module-3** Digital Electronics Fundamentals

8 Hours

Digital Computers and Digital Systems, Binary Numbers, Number Base Conversion Octal and Hexadecimal numbers,

Axiomatic Definition of Boolean Algebra, Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Digital Logic Gates.

Combinational Logic: Introduction, design procedure, adders.

Text 3: Chapter 1, 2, 4 Sections: 1.1,1.2,1.3,1.4, 2.2,2.3,2.4,2.5,2.7, 4.1,4.2,4.3

RBT Levels: L1, L2, L3

#### **Module-4** Communication Systems

8 Hours

Introduction, Modern Communication System Scheme, Transmitter, Channel, Noise, Receiver, Modulation, Types of Communication System.

Introduction, Cellular Telephone System, Cellular Concept and Frequency Reuse, GSM Communication, Wireless LAN, Bluetooth

Text 4: Chapter 1, 8 Sections: 1.1,1.2,1.3,1.4,1.5,1.6,1.9,1.15, 8.1,8.2,8.3, 8.7, 8.16,8.17

RBT Levels: L1, L2, L3

## Module-5 Embedded Systems

8 Hours

Definition, Embedded Systems Vs General Computing Systems, Classification of Embedded Systems, Major Application Areas of Embedded Systems, Purpose of an Embedded System, Core of The Embedded System: Microprocessors, GPP Vs ASIP, Microcontrollers, Microprocessor Vs Microcontroller, DSP, RISC V/S CISC, Memory: ROM, Sensors, Actuators, LED, 7-Segment LED Display.

Text 5: 1.1, 1.2, 1.4, 1.5, 1.6, 2.1.1.1-2.1.1.6, 2.2.1, 2.3.1, 2.3.2, 2.3.3.1, 2.3.3.2.

|     | IV. COURSE OUTCOMES                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
|     | At the end of the course students will be able to                                                                             |
| CO1 | Apply the working principles, fundamental characteristics of various semiconductor devices                                    |
| CO1 | including diodes, transistors and operational amplifiers in basic electronic circuits.                                        |
| CO2 | Analyze basic rectifier and amplifier circuits using the principles of diodes and operational amplifiers                      |
| CO3 | Design basic combinational circuits using the fundamental principles of digital systems.                                      |
| CO4 | Illustrate the fundamental concepts of communication systems and their applications.                                          |
| CO5 | Interpret the structure and functionality of embedded systems and digital logic components such as microcontrollers & sensors |

|            | V. CO-PO-PSO MAPPING (H=3; M=2; L=1) |   |   |   |   |   |   |   |   |    |    |    |    |    |
|------------|--------------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|
| PO/<br>PSO | 1                                    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | S1 | S2 | S3 |
| CO1        | 3                                    |   |   |   |   |   |   | 1 | 1 |    |    |    |    |    |
| CO2        |                                      | 3 |   |   |   |   |   | 2 | 2 |    |    |    |    |    |
| CO3        |                                      |   | 3 |   |   |   |   |   | 2 |    |    |    |    |    |
| CO4        | 3                                    |   |   |   |   |   |   |   |   |    |    |    |    |    |
| CO5        | 2                                    |   |   |   |   |   |   |   |   |    |    |    |    |    |

| VI. Assess | ment Details | (CIE | & SEE | ) |
|------------|--------------|------|-------|---|
|------------|--------------|------|-------|---|

General Rules: Refer to Academic Regulations

Continuous Internal Evaluation (CIE): Refer to Annexure SL#1

Semester End Examination (SEE): Refer to Annexure SL #1

## VII. Learning Resources

## VII(a): Textbooks:

| Sl.<br>No | Title of the Book                               | Name of the author                         | Edition and Year                | Name of the publisher                           |  |
|-----------|-------------------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------------|--|
| 1         | Electronic Devices and<br>Circuits Theory       | Robert L<br>Boylestad &<br>Louis Nashelsky | 10 <sup>th</sup> edition        | Pearson                                         |  |
| 2         | Electronic Circuits Fundamentals & Applications |                                            | 6 <sup>th</sup> Edition         | Elsevier, 2020                                  |  |
| 3         | Digital Logic and Computer Design               | M. Morris Mano                             | ISBN-978-81-203-0417-<br>8,2008 | PHI Learning                                    |  |
| 4         | Communication Systems                           | S L Kakani ,<br>Priyanka Punglia           | 1 <sup>st</sup> edition,2017    | New Age International<br>Pvt Ltd                |  |
| 5         | 'Introduction to Embedded Systems',             | K V Shibu                                  | 2nd Edition,2019.               | McGraw Hill Education (India), Private Limited, |  |

## VII(b): Reference Books:

| 1 | Electronic Devices and Circuit Theory | David A Bell   | 5 <sup>th</sup> Edition | Oxford University<br>Press |
|---|---------------------------------------|----------------|-------------------------|----------------------------|
| 2 | Electronic Communication Systems      | George Kennedy | 4 <sup>th</sup> edition | ТМН                        |

## VII(c): Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/122106025
- https://nptel.ac.in/courses/108105132
- https://nptel.ac.in/courses/117104072
- https://youtu.be/C0s7TS6HK0I
- https://youtu.be/j8V8nDCIHXY

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Welcome to Virtual Labs - A MHRD Govt of India Initiative (vlabs.ac.in)