

Approved by AICTE, 2(f) and 12(B) recognized by UGC, New Delhi Accredited by NAAC, Accredited by NBA, Certified by ISO 9001 - 2015

Autonomous

Scheme and Syllabus

Third Year

V & VI Semester

2023 Scheme

SERVICE TO MANKIND IS SERVICE TO GOD

His Divine Soul Padmabhushana

Founder President, Sri Adichunchanagiri Shikshana Trust®

Sri Sri Sri Dr. Balagangadharanath MahaSwamiji

Belief in God is not ignorance or illusion. It is a belief that there is an unseen, ineffable Power that transcends all our powers of muscles, mind and lives.

His Holiness Parama Pujya Sri Sri Sri Dr. Nirmalanandanatha MahaSwamiji

President, Sri Adichunchanagiri Shikshana Trust ®

True richness is the generosity of heart. Cultivate it and work to help the less fortunate ones in life.

Revered Sri Sri Dr. Prakashanatha Swamiji

Managing Director, BGS & SJB Group of Institutions & Hospitals

s

People and prosperity follow the path which the leaders take. So the elders and leaders should make sure that they give the right lead and take the right path.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

		Table of Contents	
Sl. No.		Topic	
1		Department Vision and Mission	
2		Version Sheet	
3		V Semester Scheme	
4		VI Semester Scheme	
S	ubject Code	Subject	Page No
5	23CDT501	Theory of Computation	01 - 03
6	23CDI502	Computer Networks	04 - 07
7	23CDI503	Artificial Intelligence and Machine Learning	08 - 11
8	23CDL504	Data Visualization Lab	12 - 14
9	23CDP511	Computer Vision	15 - 17
10	23CDP512	Exploratory Data Analytics	18 - 20
11	23CDP513	Data Warehousing 2.0	21 - 24
12	23CDP514	NOSQL Databases	25 - 27
13	23CDE531	Java Full Stack Development	28 - 31
14	23CDE532	Web Programming	32 - 34
15	23CDE533	IOT Analytics	35 - 37
16	23CDE534	Information and Network Security	38 - 40
17	23CDAE51	Devops	41 - 42
18	23CDAE52	Mobile Application Development with Flutter	43 - 44
19	23CDAE53	Generative AI	45 - 47
20	23CDAE54	React	48 - 51
21	23CDT601	Big Data Analytics	52 - 55
22	23CDI602	Deep Learning	56 - 59
23	23CDL603	Big Data Analytics Lab	60 - 62

24	23CDP621	Natural Language Processing	63 - 66
25	23CDP622	Block Chain Technologies	67 - 69
26	23CDP623	Distributed File System	70 - 72
27	23CDP624	Digital Marketing	73 - 75
28	23CDO611	Introduction to Data Structures	76 - 78
29	23CDO612	Fundamental of operating System	79 - 81
30	23CDO613	Introduction to Data Science	82 - 83
31	23CDO614	OOPS with Java	84 - 87
32	23CDE641	UI/UX using Flutter	88 - 90
33	23CDE642	Parallel Programming	91 - 93
34	23CDE643	Prompt Engineering	94 - 96
35	23CDE644	Data Privacy & Security	97 - 99
36	23RMAE61	Research Methodology & IPR	100 – 103
37	23SCRH08	Social Connect Responsibility	104 - 106

||JAI SRI GURUDEV|| Sri AdichunchanagiriShikshana Trust ®

SJB INSTITUTE OF TECHNOLOGY

An Autonomous Institution under Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited by NAAC, New Delhi with 'A+' Grade, Accredited by National Board of Accreditation, New

> Recognized by UGC, New Delhi with 2(f) and 12(B), Certified by ISO 9001-2015 No. 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560 060

Department of Computer Science & Engineering (Data Science)

Vision

To enrich the next generation of young data practitioners, accomplish academic excellence and bring forward the Data Scientists.

Mission

M1: Grooming the students equipping with advanced technical knowledge to be industry-ready and globally competent.

M2: Facilitate quality data science education, enable students to become skilled professionals to solve real-time problems through industry collaboration.

M3: Encourage ethical value based transformation to serve the society with responsibility emphasizing on innovation and research methods

Program Educational Objectives

PEO1. Apply the structured statistical and mathematical methodology to process massive amounts of data to detect underlying patterns to make predictions under realistic constraints and to visualize the data.

PEO2. Promote design, research, product implementation and services in the field of Data Science by using modern tools

Program Specific Outcomes

PSO1: Apply the skills in the multi-disciplinary area of Data Science.

PSO2: Demonstrate Engineering Practice learnt to solve real-time problems in various domains.

Autonomous Institution affiliated to Visvesvaraya Technological University, Belagavi

Recognized by UGC, New Delhi with 2(f) & 12 (B), Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

2023 Scheme – UG

Syllabus Book for Department of Computer Science and Engineering (Data Science)

Syllabus for 5th & 6th Semester

The syllabus, scheme and guidelines are provided in detail.

The syllabus, scheme and guidelines are subjected to changes if any needed.

The updates will be done timely.

Regularly access the institution website for the updated information.

The Syllabus book is available on	www.sjbit.edu.in
For any queries, please write to	academicdean@sjbit.edu.in

UPDATES

Release / Revision	Date	Remarks
Release	29/03/2025	First release
Rev-1		

Autonomous Institution affiliated to Visvesvaraya Technological University, Belagavi Recognized by UGC, New Delhi with 2(f) & 12 (B), Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Autonomous Scheme of Teaching & Examinations (ST&E) (Tentative) UG - BE 3rd Year -CSE(DS)

SCHEME: 2023 SEM: V Revision date: 29-03-2025

		0)			jt.	pt		7	Teachi	ng Hrs/W	'eek	Examinations					
	Course Code Course Title			Der	g de	ts	L	T	P	0	ks	SEI	E (Dur	. & Ma	arks)		
S. #	Type	L # E Course Code Course Title		Course Title	Teaching Dept.	QP setting dept	Credits	Lecture	Tutorial	Practical	PBL/ABL / SL/etc.	CIE Marks	Dur.	Th.	Lab	Tot.	
1	PCC	3	23CDT501	Theory of Computation	CSE(DS)	CSE(DS)	3	3	0	0		50	03	50	ı	100	
2	IPCC	5	23CDI502	Computer Networks	CSE(DS)	CSE(DS)	4	3	0	2		50	03	50	-	100	
3	IPCC	6	23CDI503	Artificial Intelligence and Machine Learning	CSE(DS)	CSE(DS)	4	3	0	2		50	03	50	-	100	
4	PCCL	3	23CDL504	Data Visualization Lab	CSE(DS)	CSE(DS)	1	0	0	2		50	03	-	50	100	
5	PEC	1	23CDP51y	Professional Elective Course - 1	CSE(DS)	CSE(DS)	3	3	0	0		50	03	50	-	100	
6	ETC	3	23CDE53y	Emerging Technology Course - 3	CSE(DS)	CSE(DS)	3	3	0	0	@	50	03	50	-	100	
7	HSMC	6	23SFHH06/ 23UHVH07	Bioscience or UHV-Universal Human Values	any dept	any dept	1	0	2	0	@	50	02	50	-	100	
						CSE(DS		1	0	0		50	02	50	-	100	
8	AEC	5	23CDAE5y	Ability Enhancement Course - 5	CSE(DS)	CSE(DS	1	(or)									
						,		0	0	2		50	02	-	50	100	
			23PASN01	Physical Education - Sports and Athletics	PED	PED											
			23YOGN02	Yoga	PED	PED				-							
9	9 NCMC 4	4	23NSSN03	NSS - National Service Scheme	NSS	NSS	PP/NP	-	-		2	50	-	-	-	50	
	23NCCN04 NCC -		23NCCN04	NCC - National Cadet Corps	NCC	NCC											
	23IKSN05 Indian Knowledge System		Indian Knowledge System	HSS	HSS												
	Total									8	2	450		350	100	850	

PCC: Professional Course; IPCC: Integrated Professional Core Course; PCCL: Professional Core Course Laboratory; AEC: Ability Enhancement Course; HSMC: Humanities, Social Sciences & Management Course; NCMC: Non Credit Mandatory Course;

 $\{\, @\, \hbox{-}\, Compulsory \,\, one \,\, activity \,\, during \,\, the \,\, semester\};$

{I.E.-Industry Experts}.

PBL: project Based learning; ABL: Activity Based Learning; SL: Self-Learning

ETC (Emerging Technology Course):

For ETC (L:T:P:O) can be plaanned by the depts considering practicality & possibility of conduction, same shall be indicated along with course title in the list, if altered than above. If planned altering the prescription, the same shall be approved at the department BOS & authorities. Atleast one activity is mandatory during the delivery of the course. The guidelines is applicable to all the semesters III to VI semesters (ETC-1 to ETC-4).

Bioscience & UHV-Universal Human Values:

- 1) Any one of the course will be offered by the departments in each semester of IV & V based on the institutional planning.
- 2) Both the courses shall be studied and completed by the students registering each in the two semesters. For example, if Bioscience is offered in the IV semester, UHV-Universal Human Values is offered in the V semester.

Ability Enhancement Course-5: 23CDAE5y - 1 Credit course

- 1) The courses and the syllabus shall be defined by the respective dept. BOS.
- 2) SEE will be MCQ if offered as theory course. If offered as LAB course, SEE will be practical, with two internal examiners. Handled by Controller of Examinations.

NCMC (Non Credit Mandatory Course) for course type series-4: Refer to guidelines in III SEM.

]	Professional Elective Course - 1	Eme	erging Technology Course - 3	Ability Enhancement Course - 5				
Course Code	Course Code Course Title		Course Title	Course Code	Course Title			
23CDP511	Computer Vision	23CDE531	Java Full Stack Development	23CDAE51	Devops			
23CDP512	Exploratory Data Analytics	23CDE532	Web Programming	L 23CDAE52	Mobile Application Development with Flutter			
23CDP513	Data Warehousing 2.0	23CDE533	IOT Analytics	23CDAE53	Generative AI			
23CDP514	NOSQL Databases	23CDE534	Information and Network Security	23CDAE54	React			

Autonomous Institution affiliated to Visvesvaraya Technological University, Belagavi Recognized by UGC, New Delhi with 2(f) & 12 (B), Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Autonomous Scheme of Teaching & Examinations (ST&E) (Tentative) UG - BE 3rd Year - CSE(DS)

SCHEME: 2023 SEM: VI Revision date: 29-03-2025

										Acvision date.						27 03 2023				
		ě			pt.	ept		7	Teachi i	ng Hrs/W	eek	Examinations								
	Course	Course Type Course Code Course Title		J. De	p g	its	L	T	P	0	cks	SEI	E (Dur	. & Ma	arks)					
S. #				Teaching Dept.	QP setting dept	Credits	Lecture	Tutorial	Practical	PBL/ABL / SL/etc.	CIE Marks	Dur.	Th.	Lab	Tot.					
1	PCC	4	23CDT601	Big Data Analytics	CSE(DS)	CSE(DS)	3	3	0	0		50	03	50	-	100				
2	IPCC	7	23CDI602	Deep Learning	CSE(DS)	CSE(DS)	4	3	0	2		50	03	50	-	100				
3	PCCL	4	23CDL603	Big Data Analytics Lab	CSE(DS)	CSE(DS)	1	0	0	2		50	03	1	50	100				
4	PEC	2	23CDP62y	Professional Elective Course - 2	CSE(DS)	CSE(DS)	3	3	0	0		50	03	50	-	100				
5	OEC	1	23CDO61y	Open Elective Course - 1	Any dept.	Any dept.	3	3	0	0		50	03	50	-	100				
6	ETC	4	23CDE64y	Emerging Technology Course - 4	CSE(DS)	CSE(DS)	3	3	0	0	@	50	03	50	-	100				
7	AEC	6	23RMAE61	Research Methodology & IPR	Dept.	Dept.	3	3	0	0	@	50	03	50	-	100				
8	PRJ	1	23CDPRJ1	Project - Phase I	CSE(DS)	Dept.	2	0	0	4	@	50	03	1	50	100				
9	HSMC	7	23SCRH08	Social Connect & Responsibility	Any dept	Any dept	1	1	0	0	@	50	-	-	-	50				
			23PASN01	Physical Education - Sports and Athletics	PED	PED														
			23YOGN02	Yoga	PED	PED														
10	NCMC	4	23NSSN03	NSS - National Service Scheme	NSS	NSS	PP/NP	-	-	-	2	50	-	-	-	50				
			23NCCN04	NCC - National Cadet Corps	NCC	NCC														
			23IKSN05	0	HSS	HSS														
	-	-		Total	-		23	19	0	8	2	500		300	100	900				

PCC: Professional Course; IPCC: Integrated Professional Core Course; PCCL: Professional Core Course Laboratory; PEC: Professional Elective Course; OEC: Open Elective Course;

HSMC: Humanities, Social Sciences & Management Course; AEC: Ability Enhancement Course; NCMC: Non Credit Mandatory Course; PRJ: Project work.

{@ - Compulsory one activity during the semester}; {I.E.-Industry Experts}; PBL: project Based learning; ABL: Activity Based Learning; SL: Self-Learning

NOTE: CIE & SEE guidelines for S. #7: AEC-23RMAE61-Reserach Methodology & IPR will be same as 3 credit courses BSC/ESC/PCC/ETC/PEC/OEC as mentioned in serial no. 1 of CIE & SEE guidelines.

Open Elective Courses (OEC):

- 1) Open Electives listed here are to offer for other department students.
- 2) Students shall select open elective courses offered from other departments, separate consolidated list of courses offered from various departments will be published time to time.

ETC (Emerging Technology Course):

For ETC (L:T:P:O) can be plaanned by the depts considering practicality & possibility of conduction, same shall be indicated along with course title in the list, if altered than above. If planned altering the prescription, the same shall be approved at the department BOS & authorities. Atleast one activity is mandatory during the delivery of the course. The guidelines is applicable to all the semesters III to VI semesters (ETC-1 to ETC-4).

NCMC (Non Credit Mandatory Course) for course type series-4: Refer to guidelines in III SEM.

Profess	sional Elective Course - 2 (23CDP62y)	Open I	Elective Course - 1 (23CDO61y)	Emerging	Technology Course - 4 (23CDE64y)
Course Code	Course Title	Course Code	Course Title	Course Code	Course Title
23CDP621	Natural Language Processing	23CDO611	Introduction to Data Structures	23CDE641	UI/UX with Flutter
23CDP622	Block Chain Technologies	23CDO612	Fundamental of Operating System	23CDE642	Parallel Programming
23CDP623	Distributed File System	23CDO613	Introduction to Data Science	23CDE643	Prompt Engineering
23CDP624	Digital Marketing	23CDO614	OOPS with Java	23CDE644	Data Security and Privacy

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	PCC		
Course Title:	Theo	ry of Computation			
Course Cod	le:	23CDT501		Credits:	3
Teaching Hou	urs/We	ek (L:T:P:O)	3:0:0:0	Total Hours:	40
CIE Marks	s: 50	SEE Marks:	50	Total Marks:	100
SEE Type	÷:	Theory	1	Exam Hours:	3

I. Course Objectives:

This course will enable students to:

- Introduce core concepts in Automata and Theory of Computation.
- Identify different Formal Language Classes and their Relationships.
- Learn concepts of Grammars and Recognizers for different formal languages
- Prove or disprove theorems in automata theory using their properties

II. Teaching-Learning Process (General Instructions):

These are sample Strategies which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different approaches and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding

III. COURSE CONTENT

Module-1: 08 Hrs

Introduction to Finite Automata: Introduction to Finite Automata, Structural Representations, Automata and Complexity. The Central Concepts of Automata Theory. Deterministic Finite Automata, Nondeterministic Finite Automata, An Application: Text Search, Finite Automata with Epsilon-Transitions .**Text Book1:Chapter:Section Ch**:1-1.1,1.5, 2-2.2, 2.3, 2.4, 2.5

RBT Levels: L1, L2 & L3

Module-2:

Regular Expressions: Regular Expressions, Finite Automata and Regular Expressions, Proving Languages not to be Regular. Closure Properties of Regular Languages, Equivalence and Minimization of Automata, Applications of Regular Expressions

Text Book1: Chapter: Section Ch 3-3.1, 3.2 (Except 3.2.1), 3.3, 4-4.1, 4.2, 4.4.

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Context-Free Grammars: Context-Free Grammars, Parse Trees, Ambiguity in Grammars and Languages, Ambiguity in Grammars and Languages, Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

Text Book1: Chapter: Section 5-5.1, 5.2, 5.4. 6-6.1, 6.2, 6.3.1, 6.4.

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Normal Forms for Context-Free Grammars: Normal Forms for Context-Free Grammars, The Pumping Lemma for Context-Free Languages, Closure Properties of Context-Free Languages.

Text Book1: Chapter: Section 7-7.1, 7.2, 7.3

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Turing Machines: Introduction to Turing Machines: Problems That Computers Cannot Solve, The Turing Machine, Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine.

Text Book1: Chapter: Section 8-8.1, 8.2, 8.3, 8.4. 9-9.1, 9.2

RBT Levels: L1, L2 & L3

	IV. COURSE OUTCOMES
CO1	Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and conversion between them.
CO2	Prove the properties of regular languages using regular expressions.
CO3	Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal languages
CO4	Design Turing machines to solve the computational problems.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

			1	1				1	1					
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
0														
CO1	1	2	2		3						1		2	1
CO2	2	2	2		2						1		2	1
CO3	3	2	3		2						1		2	1

CO4	3	3	2	3					1		2		1
	1 1		<u> </u>	VI.	Assessme	nt Deta	ils (C	IE &	SEE)	I.			
Genei	ral Rı	ıles:	Refer A	cademic	Regulations	S.							
<u> </u>		T4	1 T-	. 1 42	(CIE). D.	C A		Q4:	. 1				
					(CIE): Re				on 1				
Semes	ster E	nd E	xamina	tion (SE	E): Refer A	Annexui	e Sec	tion 1					
					VII. L	earning	Reso	urces					
VII (a	ı): Te	xtbo	oks:										
Sl. No.	Title	e of t	he Book	Name	e of the aut	hor		Publi	catio	n		Edi	tion
1	Auto	mata ngua	ction to Theory ges and ation",	, Johr	n E Hopcro	ft,		Pea	rson			3 rd Eo	dition
VII (b): Re	ferer	nce Bool	KS:									
2	a	bility	,Compugand		Elain Rich		Pears	on Ed	ucatio	on,2018	3	1st Ec	lition,
3	-	Theo			P Mishra, ndrashekara			PHI	,2012			3rd E	dition
4	Form	nal La	uction to anguages tomata		Peter Linz		Naros	sa Pub	lisher	s,1998		3rd E	dition

- https://archive.nptel.ac.in/courses/106/105/106105196/
- https://archive.nptel.ac.in/courses/106/106/106106049/
- https://nptelvideos.com/course.php?id=717

| Jai Sri Gurudev | Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology GGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:		v	Course Type:	IPCC					
Course Tit	le: C	compute	r Networks						
Course C	ode:		23CDI502		Credits:	4			
Teaching I {O – Other			,	3:0:2:0	Total Hours:	40 + 8-10 Lab slots			
CIE Mai	CIE Marks: 50 SEE Marks:			50	Total Marks:	100			
SEE Type: Theory				,	Exam Hours:	03			

I. Course Objectives:

This course will enable students to,

- Study the TCP/IP protocol suite, switching criteria and Medium Access Control protocols for reliable and noisy channels.
- Learn network layer services and IP versions.
- Discuss transport layer services and understand UDP and TCP protocols.
- Demonstrate the working of different concepts of networking layers and protocols.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 6. Use any of these methods: Chalk and board, Active Learning, Case Studies.

III. COURSE CONTENT

III(a). Theory PART

Module-1 08 Hrs

Introduction: Data Communications, Networks, Network Types, Networks Models: Protocol Layering, TCP/IP Protocol suite, The OSI model, **Introduction to Physical Layer:** Transmission media, Guided Media, Unguided Media: Wireless. **Switching:** Packet Switching and its types.

Textbook: Chapter: sections Ch-1: 1-1.3, Ch-2: 2.1 -2.3, Ch-7: 7.1-7.3, 8.3.

RBT Levels: L1, L2 & $\overline{L3}$

Module-2 8 Hrs

Data Link Layer: Error Detection and Correction: Introduction, Block Coding, Cyclic Codes. **Data link control:** DLC Services: Framing, Flow Control, Error Control, Connectionless and Connection Oriented, Data link layer protocols, High Level Data Link Control. **Media Access Control:** Random Access, Controlled Access. Check Sum and Point to Point Protocol

Textbook: Chapter: sections Ch-10: 10.1-10.4, Ch-11: 11.1-11.4, Ch-12: 12.1-12.2

RBT Levels: L1, L2 & L3

Module-3 08 Hrs

Network Layer: Network layer Services, Packet Switching, IPv4 Address, IPv4 Datagram, IPv6 Datagram, Introduction to Routing Algorithms, Unicast Routing Protocols: DVR, LSR, PVR, Unicast Routing protocols: RIP, OSPF, BGP, Multicasting Routing-MOSPF

Textbook: Chapter: sections Ch-18: 18.1,18.2,18.4 , Ch-20: 20.1-20.3, Ch-21: 21.3.2, Ch-22: 22.2

RBT Levels: L1,L2 & L3

Module-4 08 Hrs

Introduction to Transport Layer: Introduction, Transport-Layer Protocols: Introduction, User Datagram Protocol, Transmission Control Protocol: services, features, segments, TCP connections, flow control, Error control, Congestion control.

Textbook: Chapter: sections Ch-23: 23.1-23.2, Ch-24: 24.1-24.3.4,24.3.6-24.3.9

RBT Levels:L1,L2 & L3

Module-5 08 Hrs

Introduction to Application Layer: Introduction, Client-Server Programming, Standard Client- Server Protocols: World Wide Web and HTTP, FTP, Electronic Mail, Domain Name System (DNS), TELNET, Secure Shell (SSH).

Textbook: Chapter: sections Ch-25: 25: 25.1-25.2, Ch-26: 26: 26.1-26.6

RBT Levels: L1,L2,L3

	III(b). PRACTICAL PART
Sl. No.	Experiments
1	Implement three nodes point—to—point network with duplex links between them. Set the queue size; vary the bandwidth, and find the number of packets dropped.
2	Implement transmission of ping messages/trace route over a network topology consisting of 6 nodes and find the number of packets dropped due to congestion.
3	Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source/destination.
4	Develop a program for error detecting code using CRC-CCITT (16- bits).
5	Develop a program to implement a sliding window protocol in the data link layer.
6	Using TCP/IP sockets or Datagram socket, write a client–server program to make the clients end the file name and to make the servers end back the contents of the requested file if present.
7	Develop a program for a simple RSA algorithm to encrypt and decrypt the data.
8	Develop a program for congestion control using a leaky bucket algorithm.

Instructions for conduction of practical part:

- For the Simulation experiments modify the topology and parameters set for the experiment and take multiple rounds of reading and analyze the results available in log files. Plot necessary graphs and conclude using NS2 or NS3.
- Installation procedure of the required software must be demonstrated, carried out in groups, and documented in the report. Non simulation programs can be implemented using Java.

	IV. COURSE OUTCOMES
CO1	Explain the fundamentals of computer networks.
CO2	Apply the concepts of computer networks to demonstrate the working of various layers and protocols in communication network.
CO3	Analyze the principles of protocol layering in modern communication systems.
CO4	Demonstrate various Routing protocols and their services using tools such as Cisco packet tracer.

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)											
PO/P SO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2												
CO1	2	2			1						1	
CO2	2	2	2		2						2	2
CO3	2	2	3		3					2	1	2
CO4		3		3	3				2		2	2

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE):Refer Annexure Section 2

Semester End Examination (SEE):Refer Annexure Section 2

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	Data	Behrouz A.Forouzan	5 th Edition, 2013	Tata McGraw-Hill
	Communications			
	and Networking			

VII(b): Reference Books:

		<u> </u>		,
1.	Computer	Larry L. Peterson and	4th Edition, 2019	Elsevier
	Networks-A	Bruce S.Davie		
	Systems			
	Approach			
2.	Computer and	Nader F.Mir	2ndEdition, 2015	Pearson Education
	Communication			
	Networks			
3.	Data and	William Stallings	10thEdition, 2014	Pearson
	Computer			Education,Inc
	Communication			

VII(c): Web links and Video Lectures (e-Resources):

- https://www.digimat.in/nptel/courses/video/106105183/L01.html
- http://www.digimat.in/nptel/courses/video/106105081/L25.html
- https://nptel.ac.in/courses/10610

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Implementation of various protocols using open source simulation tools.
- Simulation of Personal area network, Home area network, achieves QoSetc.

SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Co	Course Type: IPCC					
Course Title:	Course Title: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING							
Course Cod	Course Code: 23CDI503 Credits: 04							
Teachi	ng Ho	urs/\	Week (L:T:P	P:O)	3:0:2:0	Total Hours:	40+8-10 Lab Slots	
CIE Marks	: 50	0	SEE Mar	ks:	50 Total Marks: 100			
SEE Type	:		The	eory		Exam Hours:	3 Hours	

I. Course Objectives:

- Gain a historical perspective of AI and its foundations.
- Become familiar with basic principles of AI toward problem solving.
- To familiarize the basics of machine learning and its algorithms such as decision trees.
- Understand the working of Artificial Neural Networks models and basic concepts of Classification Algorithms.
- To explore advanced concept like Bayesian models, clustering, Reinforcement learning and provide practical insight into its applications.

II. Teaching-Learning Process (General Instructions):

Mention the planned/proposed sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

III(a). Theory PART

Module-1

8 Hrs

Artificial Intelligence: What is artificial intelligence? Foundations and History of AI Intelligent Agents: Agents and Environments, Good Behaviour: The concept of rationality, the nature of Environments, the structure of Agents.

Textbook1:Chapter:Sections: Ch:1, 2

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying

Module-2

8 Hrs

Problem solving by searching: Problem solving agents, Example problems, Searching for solutions, Uniformed search strategies, Informed search strategies, Heuristic functions

Textbook1:Chapter:Sections: Ch:3

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying

Module-3

8 Hrs

Introduction: Need for Machine Learning, Machine Learning Explained, Types of Machine Learning. **Concept Learning:** Concept learning task, Concept learning as search, Find-S algorithm, Candidate Elimination Algorithm, Inductive bias of Candidate Elimination Algorithm.

Decision Tree Learning: Introduction to Decision Tree Learning Model, Decision Tree Induction Algorithms.

Textbook 2: Chapter: Sections: Ch:2, 3

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying,

Module-4

8 Hrs

Artificial Neural Networks: Introduction, Neural Networks representation, Appropriate Problems, perceptrons, Back propagation algorithm.

Regression Analysis: Introduction to Regression, Introduction to Linear Regression, Multiple Linear Regression, Polynomial Regression, Logistic Regression.

Textbook 2: Chapter: Sections: Ch:4-4.1, 4.2, 4.3, 4.4, 4.5

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying

Module-5

8 Hrs

Clustering Algorithms: Introduction to Clustering Approaches, Proximity Measures, Hierarchical Clustering Algorithms, Partitional Clustering Algorithm, Density-based Methods, Grid-based Approach. **Bayesian Learning:** Introduction, Bayes Theorem, Naïve Bayes Algorithm.

Reinforcement Learning: Introduction, The learning task, Q-Learning.

Textbook 2: Chapter: Sections Ch:8-8.1, 8.2, 8.3, 13-13.1, 13.2, 13.3

RBT Levels: L1 – Remembering, L2 – Understanding, L3 – Applying

III(b). PRACTICAL PART.

SL.No	Experiments
1	Implement A* Search algorithm.
2	Implement AO* Search algorithm.
3	Develop a program to Compute the correlation matrix to understand the relationships between pairs of features. Visualize the correlation matrix using a heatmap to know which variables have strong positive/negative correlations. Create a pair plot to visualize pair wise relationships between features. Use California Housing dataset.

4													res and an	
		distribution of each feature. Generate box plots for all numerical features and identify any outliers. Use California Housing dataset. Develop a program to implement Principal Component Analysis (PCA) for reducing												
5]	Develop a program to implement Principal Component Analysis (PCA) for reducing the dimensionality of the Iris dataset from 4 features to 2.												
6		Implement and demonstrate the Find-S algorithm												
7]	Imple	ment	and d	emons	trate t	he Ca	ndida	te Elir	ninatio	on alg	orithm	<u> </u>	
	,	Write	a pro	gram	to dem	onstr	ate the	work	ing of	the de	ecision	ı tree-h	pased ID3 a	lgorithm.
8	1	Use a	n appi	ropria									ly this know	
9					al Neu					enting	the B	Back pr	opagation a	algorithm
10	5		red a	_	_				-				sample trai considering	_
]	V. C	OURS	E OU	JTCO:	MES				
CO1	A	pprais	se the	theor	y of A	rtificia	al inte	lligen	ce and	Illust	rate th	e work	ing of AI.	
CO2	A	pply	oroble	m-so	lving a	gents	and va	arious	searc	h strat	egies 1	to solve	e a given pr	oblem.
CO3		escrib gorith		mac	hine le	arning	g techr	niques	and A	Apply	the kr	nowled	ge of Decis	sion Tree
CO4		Analyze ANN learning and Apply the knowledge of classification algorithms on various dataset and compare results.												
CO5			cluste g tech			hms to	ident	ify pa	tterns	in data	a and	implen	nent reinfor	cement
	<u> </u>				O-PO	-PSO	MAP	PING	(marl	k H=3	; M=2	; L=1)		
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	1		2								3	1
CO2	3	3	2	2	2								3	1
CO3	3	2	2		$\frac{2}{2}$								3	2
CO4	3	3	2	3	2								3	2
CO5	3	3	2	2	2								3	2
					VI.	Asses	ssmen	t Deta	ails (C	EIE &	SEE)			
Gener	al R	ules:	Refer	Acad	lemic F	Regula	ations.							
Contin	uou	s Inte	ernal l	Evalı	ıation	(CIE)): Refe	er Anı	nexure	section	n 2			
Semes	ter E	End E	xami	natio	n (SEI	E): Re	efer Ar	nexu	re sect	ion 2				
						VII.	Lea	rning	g Reso	urces				
VII(a)	: Te	xtboo	ks:											
Sl. No.	Title	e of tl	ne Bo	ok	Name	of the	auth	or	Ed	lition	and Y	'ear		e of the blisher
01		Artifi			Stuart			nd	3r	d Edit	ion, 20	015		earson
0.2		ntellig			Pet	ter No	rvig		200	31 5	,		0775	ODD
02	Mac	nine I	Learni	ng	Tom	M M	itchell		202	21, Fir	st Edi	tion	OXF Univers	ORD ity Press
VII(b)	VII(b): Reference Books:													

01	Machine Learning	S Sridhar, M	1st Edition, 2017	McGraw Hill
		Vijayalakshmi,		
02	Machine	Murty, M. N., and V.	2024.	Universities Press
	Learning: Theory	S. Ananthanarayana		
	and Practice	-		

VII(c): Web links and Video Lectures (e-Resources):

- http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html
- https://www.kdnuggets.com/2019/11/10-free-must-read-books-ai.html
- https://www.udacity.com/course/knowledge-based-ai-cognitive-systems--ud409
- https://nptel.ac.in/courses/106/105/106105077/
- https://www.universitiespress.com/resources?id=9789393330697
- https://www.drssridhar.com/?page_id=1053
- Machine Learning Tutorials: https://www.geeksforgeeks.org/machine-learning/
- Machine Learning Tutorials: https://www.tutorialspoint.com/machine_learning/index.htm
- Python for Machine Learning: https://www.w3schools.com/python_python_ml_getting_started.asp
- Introduction to Machine Learning: https://onlinecourses.nptel.ac.in/noc22_cs29/preview

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- AI Chatbot Development.
- Hands-on Projects with Kaggle Competitions.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Co	urse Type:	PCCL			
Course Title: Data Visualization Lab							
Course Coo	urse Code: 23CDL504 Credits: 01						
Teaching Ho {O – Other pedage					0:0:2:0	Total Hours:	24
CIE Mark	s: 3	50	SEE Ma	rks:	50	Total Marks:	100
SEE Type: Practica						Exam Hours:	03

I. Course Objectives:

This course will enable students to:

- Understand the Importance of data Visualization for business intelligence and decision making.
- Learn different approaches to understand the importance of visual perception.
- Learn different data visualization techniques and tools.
- Gain knowledge of effective data visuals to solve workplace problems.

Sl.No	Experiments
1	Getting Started - Tableau Workspace, Tableau terminologies, basic functionalities.
2	Connecting to Data Source – Connecting to Database, Different types of Tableau Joins.
3	Creating a View - formatting charts, adding filters, creating calculated fields and defining parameters.
4	Dashboard Design and Storytelling – Components of Dashboard, Understanding how to place worksheets in Containers, Action filters and its types.
5	Introducing Power BI –Components and the flow of work. Power BI Desktop Interface-The Report has five main areas.
6	Querying Data from CSV - Query Editor, Connecting the data from the Excel Source, Clean, Transform the data.
7	Creating Reports & Visualizations - Different types of charts, Formatting charts with Title, Colors.
8	Dashboards - Filters in Power BI, Formatting dashboards.
9	Analysis of revenue in sales dataset:
	i) Create a choropleth map (fill the map) to spot the special trends to show the state which has the highest revenue.
	ii) Create a line chart to show the revenue based on the month of the year.
	iii) Create a bin of size 10 for the age measure to create a new dimension to show the revenue.
	iv) Create a donut chart view to show the percentage of revenue per region by creating zero access in the calculated field.

- v) Create a butterfly chart by reversing the bar chart to compare female & male revenue based on product category.
- vi) Create a calculated field to show the average revenue per state & display profitable & non-profitable state.
- vii)vii) Build a dashboard.

10 Analysis of GDP dataset:

Visualize the countries data given in the dataset with respect to latitude and longitude along with country name using symbol maps.

Create a bar graph to compare GDP of Belgium between 2006 – 2026.

Using pie chart, visualize the GDP of India, Nepal, Romania, South Asia, and Singapore by the year 2010.

Visualize the countries Bhutan & Costa Rica competing in terms of GDP.

Create a scatter plot or circle views of GDP of Mexico, Algeria, Fiji, Estonia from 2004 to 2006. Build an interactive dashboard.

11 Analysis of HR Dataset:

- i) Create KPI to show employee count, attrition count, attrition rate, attrition count, active employees, and average age.
- ii) Create a Lollipop Chart to show the attrition rate based on gender category.
- iii) Create a pie chart to show the attrition percentage based on Department Category- Drag department into colours and change automatic to pie. Entire view, Drag attrition count to angle. Label attrition count, change to percent, add total also, edit label.
- iv) Create a bar chart to display the number of employees by Age group,
- v) Create a highlight table to show the Job Satisfaction Rating for each job role based on employee count.
- vi) Create a horizontal bar chart to show the attrition count for each Education field Education field wise attrition drag education field to rows, sum attrition count to col,
- vii) Create multiple donut chart to show the Attrition Rate by Gender for different Age group.

12 Analysis of Amazon Prime Dataset:

Create a Donut chart to show the percentage of movie and tv shows

Create a area chart to shows by release year and type

Create a horizontal bar chart to show Top 10 genre

Create a map to display total shows by country

Create a text sheet to show the description of any movie/movies. vi) Build an interactive Dashboard.

Instructions for conduction of practical part:

LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.

Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

	II. COURSE OUTCOMES													
CO1	Design the experiment to create basic charts and graphs using Tableau and Power BI.													
CO2	Deve	lop the	e soluti	ion for	the gi	ven rea	al worl	d prob	lem.					
CO3	Anal	yze the	e result	s and j	produc	e subs	tantial	writte	n docu	menta	tion.			
	III. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2	3	1	3				2				2	
CO2	2	2	3	1	3				2				2	
CO3	2	2	3	1	3				2				2	

IV. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

V. Learning Resources

V (a) Suggested Learning Resources:

- 1. Microsoft Power BI Dashboards Step by Step by Errin O'Connor, 2019 Pearson Education, Inc
- 2. Information Dashboard Design: Displaying Data for At-a-glance Monitoring" by Stephen Few
- 3. The DATA VISUALIZATION WORKSHOP Mario Dobber and Tim GroBmann, Pkt publishing ltd.

V(b): Web links and Video Lectures (e-Resources):

- 1 https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial- home.htm
- 2. https://www.tutorialspoint.com/tableau/index.htm
- 3. https://www.simplilearn.com/tutorials/power-bi-tutorial/power-bi-vs-tableau

VI: Activity Based Learning / Practical Based Learning/Experiential learning:

Practical Based Learning

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science & Engineering (Data Science)

Semester:	V	Cou	ırse Type:	PEC						
Course Title: Computer Vision										
Course Code: 23CDP511						Credits:	03			
	Teaching Hours/Week (L: T:P:O) {O – Other pedagogies, mention @}				3:0:0:0	Total Hours:	40			
CIE Marks:	50	50 SEE Marks:		ks:	50	Total Marks:	100			
SEE Type:			T	heory		Exam Hours:	3			

I. Course Objectives:

- To understand the fundamentals of computer vision and digital image processing.
- To introduce the processes involved in image enhancement and restoration.
- To facilitate the students to gain understanding of colour image processing and morphology.
- To impart the knowledge of image segmentation and object recognition techniques.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- l. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4.Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5.Use animations/videos to help the students to understand the concepts.
- 6.Demonstrate the concepts using a suitable programming language.

HI. COURSE CONTENT Module-1 Meading:Introduction: Definition and history of computer vision. Photometric image formation. Digital camera. Image Processing: Point operators, linear filtering Textbook:Text Book 1: Chapter: sections Ch-1(1.1, 1.2), Ch-2(2.2, 2.3), Ch-3(3.1, 3.2) RBT Levels: L1, L2& L3 Module-2 08 Hrs

Heading:Image Processing: More neighborhood operators, Fourier Transforms, Pyramids and wavelets, Geometric transformations.

Textbook: Text Book 1: Chapter: sections Ch-3 (3.3 – 3.6)

RBT Levels: L1, L2 & L3

Module-3 08 Hrs

Heading:Image Restoration and Reconstruction:Model of Image degradation / restoration process, restoration in the presence of noise only, periodic noise reduction by frequency domain filtering. Image Segmentation: Fundamentals, Point, Line and Edge detection, thresholding(foundation and basic thresholding), segmentation by region growing, region splitting and merging.

Textbook:textbook 2:Chapter: sections Ch-5 (5.1 to 5.4), Ch-10 (10. 1 to 10.3.2, 10.4)

RBT Levels: L1, L2 & L3

Module-4

08 Hrs

Heading:Color Image Processing: Color fundamentals, color models, pseudo color image processing, full color image processing, color transformations, color image smoothing and sharpening, using color in image segmentation, noise in color images.

Textbook: Text Book 2: Chapter: sections Ch-6 (6.1 – 6.8)

RBT Levels: L1, L2, L3

Module-5

08 Hrs

Heading: Morphological Image Processing: Preliminaries, Erosion and Dilation, opening and closing, Hit-or-miss transform, basic morphological algorithms.

Feature Extraction: Background, boundary processing (boundary following and chain codes only). Image Pattern Classification: Background, Patterns and Classes, Pattern classification by prototype matching (minimum distance classifier)

Textbook: Text Book 2:Chapter: sections Ch-(9. 1 – 9.5), Ch-11 (11.1 to 11.2.2), Ch-12 (12. 1 to 12. 3.1)

RBT Levels: L1, L2 & L3

IV. COURSE OUTCOMES

CO1	Explain the fundamentals of computer vision and its applications.
CO2	Apply the image enhancement techniques for smoothing and sharpening of images
CO3	Compare the different image restoration and segmentation techniques.
CO4	Demonstrate the smoothing and sharpening techniques for color images.
CO5	Explain morphological, feature extraction, and pattern classification techniques for object recognition.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2			2							1	1	
CO2	2	2			2							1	1	
CO3	2	2			2							1	1	
CO4	2	2			2							1	1	
CO5	2	2			2							1	1	

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE):Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	Computer Vision: Algorithms and Applications	Richard Szeliski	2nd Edition, 2022	Springer
2.	Multiple View Geometry in Computer Vision	Richard Hartley and Andrew Zisserman	2nd Edition, 2004 3	Cambridge University Press
3.	Computer Vision: A Modern Approach	David A. Forsyth and Jean Ponce	2nd Edition, 2011	Prentice Hall

VII(b): Reference Books:

1.	Computer Vision: A Modern Approach	David Forsyth and Jean Ponce	2 nd edition ,2015.	Pearson
2.	Concise Computer Vision – An Introduction into Theory and Algorithms	Reinhard Klette,	2014	Springer

VII(c): Web links and Video Lectures (e-Resources):

- Virtual Labs: https://cse 19
- https://cse19-iiith.ylabs.ac.in/
- https://_Qnlinecourses.nptel.ac:in/noc21 ee78/preview

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Programming Assignment-I: Implementation of important concepts of Image enhancement (point & filters) and restoration techniques with C++/Java/Python

Programming Assignment-2: Implementation of segmentation, Morphological and colour image processing techniques with C++/Java/Python

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	PEC					
Course Title: Exploratory Data Analysis								
Course Code: 23CDP512					Credits:	03		
	Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}				Total Hours:	40		
CIE Marks:	50	O SEE Ma	arks:	50	Total Marks:	100		
SEE Type:		7	Γheory		Exam Hours:	03		

I. Course Objectives:

- To equip students with the necessary skills in Python, IPython, and Jupyter for performing data analysis tasks.
- To provide students with an in-depth understanding of NumPy for effective scientific computation.
- To introduce both basic and advanced techniques for data manipulation using Pandas.
- To develop proficiency in data visualization through Matplotlib and Seaborn.
- To introduce the concepts of Machine Learning with hands-on applications using Scikit-Learn.
- To encourage the practical use of data analysis tools and techniques on real-world datasets.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. The lecturer's approach (L) should not be limited to traditional lectures; alternative and effective teaching methods should be considered to achieve the desired outcomes.
- 2. Utilize videos, animations, and demonstrations to illustrate the functioning of various concepts.
- 3. Foster collaborative learning (group learning) within the classroom environment.
- 4. Pose at least three higher-order thinking (HOT) questions during class to encourage critical thinking.
- 5. Implement Problem-Based Learning (PBL) to enhance students' analytical skills and promote design thinking, focusing on abilities like design, evaluation, generalization, and analysis, rather than mere memorization.
- 6. Leverage animations and videos to aid students in comprehending complex concepts.
- 7. Demonstrate key concepts using Python and its associated libraries.

III. COURSE CONTENT Module-1 08 Hrs Heading: Introduction to Python and NumPy: The Basics of NumPy Arrays, Sorted Arrays, Structured Data: NumPy's Structured Arrays Textbook-1: Chapter: sections: Ch-2, Ch-5, Ch-11, Ch-12 **RBT Levels:** L1, L2 & L3 Module-2 **08 Hrs** Heading: Introducing Pandas Objects, Handling Missing Data, Hierarchical Indexing, Pivot Tables. Textbook-1: Chapter: sections Ch-13, Ch-16, Ch-17, Ch-21 **RBT Levels:**L1, L2 & L3 Module-3 08 Hrs **Heading:** Vectorized String Operations, Working with Time Series, High Performance Pandas: eval and query. Textbook-1: Chapter: sections Ch-22, Ch-23, Ch-24 **RBT Levels:**L1, L2 & L3 **Module-4** 08 Hrs Heading: General Matplotlib Tips, Simple Line Plots, Simple Scatter Plots, Visualization with Seaborn. Textbook-1: Chapter: sections Ch-25, Ch-26, Ch-27, Ch-36 RBT Levels:L1, L2 & L3 Module-5 08 Hrs Heading: Machine Learning, Introducing Scikit-Learn, Hyperparameters and Model Validation. Textbook-1: Chapter: sections Ch-37, Ch-38, Ch-39 RBT Levels:L1, L2 & L3 IV. COURSE OUTCOMES Demonstrate the application of the NumPy for performing data analysis tasks. **CO1**

CO2	N	Make use of Pandas for various data manipulation tasks.												
CO3	A	Apply	advar	iced d	ata ma	anipul	ation t	echnic	ques t	o real-	world d	latasets.		
CO4	CO4 Develop data visualizations using Matplotlib and Seaborn to effectively communicate data insights.							municate						
CO5		-	n the Learn		menta	ıl con	cepts	of ma	chine	learni	ng and	validat	tion mod	els using
	V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)													
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	3				2				1				3	
CO2	3	2			2				1				3	
CO3	3	3	2		2									3
CO4	3					2				3			3	
CO5	3	3	2	2	2									3

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher					
1.	Python Data	Jake VanderPlas	2nd Edition, 2022.	Oreilly					
	Science								
	Handbook:								
	Essential Tools								
	for Working with								
	Data,								
VII(b	VII(b): Reference Books:								
1	Python Data	Fabio Nelli	3 rd Edition, 2023	Apress					

VII(c): Web links and Video Lectures (e-Resources):

Analytics

- Numpy Tutorial https://www.w3schools.com/python/numpy/default.asp
- Pandas Tutorial https://www.w3schools.com/python/pandas/default.asp
- Matplotlib Tutorial https://www.w3schools.com/python/matplotlib_intro.asp
- Introduction to ML with Scikit Learn https://scikit-learn.org/1.4/tutorial/basic/tutorial.html

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Programming Assignment-1: Implementation of important concepts of data manipulation using NumPy and Pandas (Python) 10 Marks
- Programming Assignment-2: Implementation of simple Machine Learning models with Visualization using Python (MatPlotlib, Scikitlearn) 15 Marks

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type	: PEC					
Course Title:	Course Title: Data Warehousing 2.0							
Course Code	e:	23CDP513			Credits:	03		
	Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}				Total Hours:	40		
CIE Marks	: 50	SEE M	larks:	50	Total Marks:	100		
SEE Type	:		Theory	7	Exam Hours:	03		

I. Course Objectives:

To understand the need of data warehousing.

- To understand the planning a data warehouse based on business requirements
- To understand the architectural components of Data warehouse
- To understand the data modeling approaches in Data Warehousing
- To understand OLAP operations and use them effectively to improve data quality

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking. 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it. 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

Module-1: 08 Hrs

Escalating Need for Strategic Information, Failures Of Past Decision-Support Systems, Operational Versus Decision-Support Systems, Data warehousing—The Only Viable Solution, Data Warehouse Defined. **Data**

Warehouse: The Building Blocks: Defining Features, Data Warehouses and Data Marts, Architectural Data

Warehouse: Types, Components: Source Data Component, Data Staging Component, Data Storage

Component, Information Delivery Component, Metadata Component, Management and Control

Component, Metadata In The Data Warehouse.

Textbook: Chapter: sections Ch:1,2

RBT Levels: L1, L2 & L3

Module-2: 08 Hrs

Planning And Project Management: Planning Your Data Warehouse, The Data Warehouse Project, The Development Phases, The Project Team, Project Management Considerations Defining

The Business Requirements: Dimensional Analysis, Information Packages: Requirements Not Fully Determinate, Business Dimensions, Dimension Hierarchies and Categories, Key Business Metrics Or Facts, Requirements Gathering Methods, Data Sources, Data Transformation, Data Storage, Information Delivery, Information Package Diagrams.

Requirements As The Driving Force For Data warehousing : Data Design , The Architectural Plan , Data Storage Specifications , Information Delivery Strategy.

Textbook: Chapter: sections Ch: 4,5,6

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Architectural Components: Understanding Data Warehouse Architecture, Distinguishing Characteristics, Architectural Framework, Technical Architecture.

Infrastructure As The Foundation For Data warehousing: Infrastructure Supporting Architecture, , Database Software, Collection Of Tools, Data Warehouse Appliances.

The Significant Role of Metadata: Metadata Defined, , Metadata Repository, Metadata Management,

Textbook 1:Chapter:sections CH: 7,8,9 Textbook 2:Chapter:sections CH: 11

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Principles Of Dimensional Modeling: From Requirements To Data Design , E-R Modeling Versus Dimensional Modeling, The Star Schema , Star Schema Keys , Advantages Of The Star Schema , Star Schema: Examples .

Dimensional Modeling Advanced Topics: Updates To The Dimension Tables, The Snowflake Schema, Aggregate Fact Tables.

Data Extraction, Transformation, And Loading: ETL Overview, ETL Requirements And Steps, Data Extraction, Data Transformation, Data Loading, ETL Tool Options, Reemphasizing ETL Metadata.

Textbook: Chapter: sections Ch: 10,11,12

RBT L	Levels:	L1,	L2	& 1	L3
-------	---------	-----	----	-----	----

Module-5 08 Hrs

Data Quality: A Key To Success: Why Is Data Quality Critical? Data Quality Challenges, Data Quality Tools, Data Quality Initiative,. Matching Information To The Classes Of Users: Information From The Data Warehouse, Who Will Use The Information? Information Delivery framework, On-Line Analytical Processing(OLAP): Need of OLAP, Multidimensional Data Model, OLAP Guidelines, Multidimensional versus Multirelational OLAP, OLAP Models: MOLAP Modele, ROLAP Model.

MLops – what is MLop, Key components of MLops,

Textbook1: Chapter: sections Ch:13,14,15,16

Textbook2 : Chapter: sections Ch:13

RBT Levels: L1, L2 & L3

IV. COURSE OUTCOMES						
CO1	Explain the need for strategic information and data warehousing.					
CO2	Describe necessary skills to plan, manage, and execute data warehouse projects effectively.					
CO3	Identify the role of metadata in data warehousing.					
CO4	Analyse multi-dimensional modeling techniques for effective data organization in data warehouses.					
CO5	Explain the importance of data quality and master data management in data warehousing.					

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	1	1	-	-						1		2	-
CO2	2	2	2	2	2						2		2	1
CO3	2	2	1	1	-						-		2	1
CO4	2	2	2	2	2						2		2	1
CO5	2	1	1	-	1						1		2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:(Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Data	PAULRAJ	Second Edition, 2010.	Wiley
	Warehousing	PONNIAH,		
	Fundamentals for			
	IT Professionals,			
2	Data	Alex Berson Stephen	Edition 2004	TATA McGRAW
	Warehousing.	J. Smith		HILL
	Data Mining &			
	OLAP			

VII(b): Reference Books:										
1.	Data Sam Anahory Dennis 2020 Pearson									
	Warehousing in Murray									
	the Real World									
VII(c): Web links and Video Lectures (e-Resources):										

https://archive.nptel.ac.in/courses/106/105/106105191/

- https://www.youtube.com/watch?v=m-aKj5ovDfg
- https://onlinecourses.swayam2.ac.in/cec19_cs01/preview
- http://nptel.ac.in/video.php?subjectId=106106093
- http://textofvideo.nptel.iitm.ac.in/video.php?courseId=106106093&p=4

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course	e Type:	PEC					
Course Title: NOSQL Databases									
Course Cod	le:	23CI	DP514			Credits:	03		
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}					3:0:0:0	Total Hours:	40		
CIE Marks	arks: 50 SEE Marks:		rks:	50	Total Marks:	100			
SEE Type	Theory Theory					Exam Hours:	03		

I. Course Objectives:

This course will enable students to:

- Understand the importance and need of NoSQL
- Exposure to Map-reduce and Key-Value databases
- Understand fundamentals of Document Databases
- Identify different usecases where graph databases are advantageous

II. Teaching-Learning Process (General Instructions):

Mention the planned/proposed sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. CO URSE CONTENT

Module-1: 08 Hrs

Why NoSQL: The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, A (Mostly) Standard Model, Impedance Mismatch, Application and Integration Databases, Attack of the Clusters, The Emergence of NoSQL Aggregate Data Models: Aggregates, Example of Relations and Aggregates, Consequences of Aggregate Orientation, Summarizing Aggregate-Oriented Databases. More Details on Data Models: Relationships, Graph Databases, Schema less Databases, Materialized Views,

Textbook1: Chapter: sections Ch:1,2,3

RBT Levels: L1, L2 & L3

Module-2: 08 Hrs

Distribution Models: Single Server, Sharding, Master-Slave Replication, Peer-to-Peer Replication, Combining Sharding and Replication. **Consistency:** Update Consistency, Read Consistency, Relaxing Consistency, The CAP Theorem. Version Stamps: Business and System Transactions, Version Stamps on Multiple Nodes.

Textbook1:Chapter:sections 4,5,6

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Map-Reduce: Basic Map-Reduce, Partitioning and Combining, Composing Map-Reduce Calculations, A Two Stage Map-Reduce Example, Incremental Map-Reduce Key-Value Databases: What Is a Key-Value Store, Key-Value Store Features: Consistency, Transactions, Query Features, Structure of Data, Scaling, Suitable Use Cases: Storing Session Information, User Profiles, Preference, Shopping Cart Data, When Not to Use: Relationships among Data, Multioperation Transactions, Query by Data, Operations by Sets.

Textbook1: Chapter: sections Ch: 7,8

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Document Databases: What Is a Document Database? Features: Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases: Event Logging, Content Management Systems, Blogging Platforms, Web Analytics or Real-Time Analytics, ECommerce Applications, When Not to Use: Complex Transactions Spanning Different Operations, Queries against Varying Aggregate Structure.

Textbook1: Chapter: sections Ch:9

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Graph Databases: What Is a Graph Database?, Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases: Connected Data, Routing, Dispatch, and Location-Based Services, Recommendation Engines, When Not to Use.

Textbook 1:Chapter:sections Ch:11

RBT Levels: L1, L2 & L3

IV. COURSE OUTCOMES

CO1 Differentiate between NoSQL and traditional databases.

CO2	Analyze the need of NoSQL in handling huge databases.
CO3	Use of Map-Reduce concepts for concurrent processing of larger datasets.
CO4	Apply the concepts document databases for different real time use cases.
CO5	Analyse the impact of Graph databases in discovering complex relationships and hidden patterns in data.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2	1	1	1							1	2	
CO2	2	2	2	2	3							1	2	1
CO3	2	2	2	2	3							1	2	1
CO4	2	2	2	2	3							1	2	1
CO5	2	2	2	2	3							1	2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
	NoSQL Distilled: A	Pramod J.Sadalage, P.	2012	Pearson Addison
1	Brief Guide to the	& Fowler,		Wesley
1	Emerging World of			
	Polyglot Persistence,			

VII(b): Reference Books:

1	"NoSQL For Mere	Dan Sullivan,	1st Edition,2015.(ISBN13:	Pearson Education
1	Mortals",		978-9332557338)	India,
	"Making Sense of	Dan McCreary and	1st Edition, 2013. (ISBN-13:	Manning
,	NoSQL: A guide for	Ann Kelly,	978-9351192022)	Publication/Dreamte
<i>Z</i>	Managers and the			ch Press,
	Rest of us",			

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.neo4j.com/docs/cypher-manual/current/introduction/
- 2. https://www.mongodb.com

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

Sti Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type	ETC	•								
Course Title: Java Full Stack Development												
Course Code: 23CDE531 Credits: 03												
Teaching Hot {O – Other pe		ek (L:T:P:O) es, mention @}		3:0:0:@	Total Hours:	40						
CIE Marks: 50 SEE Marks: 50 Total Marks: 10												
SEE Type	SEE Type: Theory Exam Hours: 03 hrs											

I. Course Objectives:

- Gain a solid understanding of Enumerations and Annotations.
- Utilize Generic classes effectively in Java programs.
- Explore and implement fundamental String operations.
- Develop dynamic web applications using Java Servlets and JSP.
- Integrate database interactions using Java Database Connectivity (JDBC).

II. Teaching-Learning Process (General Instructions):

The following are some of the strategies that teachers can employ to facilitate the achievement of various course outcomes:

- **1. Diverse Teaching Methods**: Instead of relying solely on traditional lecture methods, can explore alternative and effective teaching approaches. These might include interactive discussions, hands-on activities, or multimedia presentations.
- **2. Visual Aids:** Utilize videos and animations to elucidate complex concepts. Visual representations enhance understanding and engagement among students.
- **3.** Collaborative Learning: Encourage group learning within the classroom. Collaborative activities foster teamwork, communication, and a deeper grasp of subject matter.
- **4. Higher Order Thinking (HOT) Questions:** Pose at least three thought-provoking questions during class. These questions stimulate critical thinking and encourage students to analyze and evaluate information.
- **5. Problem-Based Learning (PBL):** Implement PBL, which nurtures analytical skills. PBL goes beyond rote memorization by challenging students to design solutions, evaluate evidence, and think critically.
- **6. Multiple Representations:** Introduce topics using various representations. Visuals, diagrams, and real-world examples cater to diverse learning styles.
- **7.** Creative Problem Solving: Present different approaches to solving the same problem. Encourage students to think outside the box and devise their own innovative solutions.

- **8. Real-World Application:** Discuss how each concept relates to practical scenarios. Connecting theoretical knowledge to real-world contexts enhances students' comprehensionand retention.
 - Chalk & Talk
 - Stud. Assignment
 - Web Resources
 - LCD/Smart Boards
 - Stud. Seminars

III. COURSE CONTENT

Module-1 08 Hrs

Java Fundamentals:Describe the use of main in a Java application, perform basic input and output using standard packages, Evaluate the scope of a variable, Comment and document programs.

Data Types, Variables: Declare and use primitive data type variables, Construct and evaluate code that manipulates strings, Construct and evaluate code that creates, iterates, and manipulates arrays and array lists, Construct and evaluate code that performs parsing, casting, and conversion, Construct and evaluate arithmetic expressions.

Textbook:1 Chapter 2: sections Ch-2: 2.3-2.6, Ch-3: 3.1-3.5

Pre-requisites (Self Learning)

Basic understanding of what programming is and familiarity with concepts like algorithms and flowcharts. Basic knowledge of at least one other programming language (optional but helpful). Basic arithmetic operations (addition, subtraction, multiplication, division). Understanding of mathematical expressions and operator precedence.

RBT Levels: L1, L2, L5, L6

Module-2 08 Hrs

Flow Control Implementation: Construct and evaluate code that uses branching statements and loops, logical operators and constructs.

Object-Oriented Programming: Construct and evaluate class definitions, Declare, implement, and access data members in classes, Implement code on oops (Encapsulation, Inheritance, Polymorphism, Abstraction, Interface).

Textbook:1 Chapter 5: sections Ch-5: 5.4-5.6, Ch-6: 6.1-6.4

Pre-requisites (Self Learning)

Basic knowledge of logical operators and constructs. Ability to trace and understand simple flowcharts and pseudo code. Understanding the concepts of classes and objects. Familiarity with terms like inheritance, polymorphism, and encapsulation (basic level).

RBT Levels: L5, L6

Module-3 08 Hrs

Declare, implement, and access methods, Instantiate and use class objects in programs Troubleshoot syntax errors, logic errors, and runtime errors, Implement exception handling.

Enumerations: Enumerations, Enumeration fundamentals, the values() and valueOf() methods, Java enumerations are class types, enumerations inherits Enum, example, type wrappers.

Generics: What are Generics, A Generic Class with Two Type Parameters, The General Form of a Generic Class, Bounded Types, Using Wildcard Arguments, Creating a Generic Method, Generic Interfaces, Raw types and Legacy code, Generic Class Hierarchies, Ambiguity errors, Some Generic Restrictions

Textbook:1 Chapter 6: sections Ch-6: 6.8-6.10, Ch-12, Ch-14

Pre-requisites (Self Learning)

Understanding of method overloading and overriding. Familiarity with the concept of constructors and destructors in any programming language. Basic Knowledge on Enumerations and Generics in Java.

RBT Levels: L1,L2, L3

Module-4: 08 Hrs

String Handling: The String Constructors, String Length, Special String Operations, Character Extraction, String Comparison, Searching Strings, Modifying a String, Data Conversion Using valueOf (), Changing the case of characters within a String, String Buffer, String Builder.

The life cycle of a servlet: A simple servlet; the servlet API; The javax.servlet package Reading servlet parameter; the javax.servlet.http package; Handling HTTP Requests and Responses; using Cookies; Session Tracking.

Textbook:1:Chapter: sections Ch-5, Ch-31

Pre-requisites (Self Learning)

Understanding of string handling and the life cycle of a servlet by knowing the basic knowledge on API, servlet, cookies and handling HTTP requests and responses.

RBT Levels: L1, L2 & L3

Module-5 08 Hrs

Java Server Pages (JSP): JSP tags, Variables and Objects, Methods, Control statements, Loops, Request String, Parsing other information, User sessions, Cookies, Session Objects.

The concept of JDBC: JDBC Driver Types; JDBC packages; A brief overview of the JDBC Process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; Result Set; Transaction Processing; Metadata, Data Types; Exceptions.

Textbook:2: Chapter: sections Ch-11, Ch-6

Pre-requisites (Self Learning)

Understanding the Java server pages and the JDBC drivers and its components.

RBT Levels: L1, L2 & L3

			-, —–											
	IV. COURSE OUTCOMES													
CO1		Proficiently write and execute Java programs with proper structure and documentation.												
CO2		Effectively perform data manipulation and conversion using primitive types, strings, arrays, and array lists.												
CO3	J	Jtilize	contr	ol flov	v state	ements	s to cr	eate lo	gical	and ef	ficien	t prog	ram execut	ion.
CO4		Design and implement classes with appropriate data members and methods, applying object-oriented principles.												
CO5	Ι	Debug	, troul	olesho	ot, an	d hand	lle exc	ception	ns to r	nainta	in rob	ust an	d error-free	e code.
CO6		Develo echnio	_	mpreh	ensive	e Java	appl	licatio	ns tha	at inte	egrate	all le	earned con	cepts and
				V. C	O-PO	-PSO	MAP	PING	(mark	K H=3;	M=2	; L=1))	
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	2	1 3 3 2 1 1 2 2 2												
CO2	1	2	2	2	2						2	1	2	1

CO3	2	2	2	2	2			1	2	1	1
CO4	2	2	2	2	1			1	2	2	2
CO5	2	2	3	2	1			2	1	2	1
CO6	2	2	2	2	1			2	1	2	1

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 1.

Semester End Examination (SEE): Refer Annexure Section 1.

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	JAVA the	Herbert Schildt	Reference 9 th Edition	Tata McGraw-Hill
	Complete			2
2	The Complete	Jim Keogh	7 th Edition	Tata McGraw-Hill
	Reference J2EE			
VII(b): Reference Books	:		
1	Introduction to	Y. Daniel Liang	7th Edition, 2007	Pearson Education
	JAVA			
	Programming			

VII(c): Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/106/105/106105191/
- https://nptel.ac.in/courses/106/105/106105225/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Assignments, Quizzes and Seminar.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	ETC								
Course Title: Web Programming											
Course Code: 23CDE532 Credits: 03											
Teaching Hou {O – Other peo		ek (L:T:P:O) es, mention @}		3:0:0:@	Total Hours:	40					
CIE Marks:	50	SEE Ma	arks:	50	Total Marks:	100					
SEE Type:		7	Theory		Exam Hours:	03 hrs					

I. Course Objectives:

- To develop dynamic website using JavaScript, JDBC
- To get expertise of Java Server Pages and Servlets for server-side programming.
- To become familiar with the data operations carried out by XML-based web applications.

II. Teaching-Learning Process (General Instructions):

- To achieve expertise in developing dynamic websites using JavaScript and JDBC, mastering
 Java Server Pages (JSP) and Servlets for server-side programming, and understanding data
 operations in XML-based web applications, a structured teaching-learning approach is
 essential.
- 2. The learning process should begin with foundational concepts through theoretical lessons, followed by hands-on practical exercises.
- 3. Interactive coding sessions, real-world projects, and case studies should be incorporated to enhance problem-solving skills.
- 4. Tutorials, online resources, and guided assignments can help reinforce key concepts. Regular coding challenges and debugging exercises will improve logical thinking and practical application.
- 5. Collaborative learning through peer discussions, group projects, and code reviews will encourage knowledge sharing. Additionally, integrating XML processing with real-time applications will strengthen the understanding of data operations.
- Evaluations through quizzes, mini-projects, and assessments will track progress, ensuring a
 comprehensive learning experience that builds both theoretical knowledge and practical
 expertise.

III. COURSE CONTENT

Module-1 08 Hrs

Introduction to WEB Programming:

Internet, WWW, Web Browsers, and Web Servers, URLs, MIME, HTTP, Security, The Web Programmers Toolbox.

Textbook: Chapter: sections Ch-1: 1.1 to 1.9

RBT Levels: L1 & L2

Module-2 08 Hrs

HTML and XHTML: Origins of HTML and XHTML, Basic syntax, Standard XHTML document structure, Basic text markup, Images, Hypertext Links, Lists, Tables. Forms, Frames in HTML and XHTML, Syntactic differences between HTML and XHTML

Textbook: Chapter: sections Ch-2: 2.1 to 2.9

RBT Levels: L1, L2 & L3

Module-3 08 Hrs

CSS: Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, Background images, tags.

Textbook 1: Chapter: sections Ch-3: 3.1 to 3.12

RBT Levels: L1, L2 & L3

Module-4 08 Hrs

Java Script – I:

Object orientation and JavaScript; General syntactic characteristics; Primitives, Operations, and expressions; Screen output and keyboard input.

Textbook 1: Chapter: sections Ch-4: 4.1 to 4.5

RBT Levels: L1, L2 & L3

Module-5 08 Hrs

Java Script – II:

Control statements, Object creation and Modification; Arrays; Functions; Constructor; Pattern matching using expressions; Errors, Element access in JavaScript.

Textbook 1: Chapter: sections Ch- 4: 4.6 to 4.14

RBT Levels: L1, L2 & L3

	IV. COURSE OUTCOMES									
CO1	Describe the fundamentals of web and concept of HTML.									
CO2	Use the concepts of HTML, XHTML to construct the web pages.									
CO3	Interpret CSS for dynamic documents.									
CO4	Evaluate different concepts of JavaScript & Construct dynamic documents.									

	V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)													
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	3				2							1	2	
CO2			3		2				1					3
CO3			3		2					1				3
CO4			3	2	1									3

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE):Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:(Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the Publisher
1	Programming the	Robert W Sebesta	6th Edition,2008.	Pearson Education
	World Wide Web			

VII(b): Reference Books:(Insert or delete rows as per requirement)

1	Internet & World	M.Deitel, P.J.Deitel,	3rd Edition, 2004.	Pearson Education
	Wide Web How	A.B.Goldberg		/ PHI
	to program			
2	Web	Chris Bates	3rd Edition, 2006.	Wiley India
	Programming			
	Building Internet			
	Applications			

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/watch?v=HcOc7P5BMi4&list=PLfqMhTWNBTe0PY9xunOzsP5k mYIz2Hu7i
- 2. https://www.youtube.com/watch?v=l1EssrLxt7E&list=PLfqMhTWNBTe3H6c9OGXb5_6wcc
 https://www.youtube.com/watch?v=l1EssrLxt7E&list=PLfqMhTWNBTe3H6c9OGXb5_6wcc
 https://www.youtube.com/watch?v=l1EssrLxt7E&list=PLfqMhTWNBTe3H6c9OGXb5_6wcc
 https://www.youtube.com/watch?v=l1EssrLxt7E&list=PLfqMhTWNBTe3H6c9OGXb5_6wcc
 https://www.youtube.com/watch?v=l1EssrLxt7E&list=PLfqMhTWNBTe3H6c9OGXb5_6wcc

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Assignments, Quiz, Case Studies, Mini Projects

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science Engineering (Data Science)

Semester:	V	Co	urse Type:	ETC						
Course Title: IOT Analytics										
Course Cod	le:	23CDE533			Credits:	03				
Teaching Hour		`	3:0:0:	: @	Total Hours:	40				
CIE Marks:	50	SEE Marks:	50		Total Marks:	100				
SEE Type:		Theory			Exam Hours:	03				

I. Course Objectives:

- Understand the recent application domains of IoT in everyday life.
- Understand the protocols and standards designed for IoT and the current research on it.
- Understand the other associated technologies like cloud and fog computing in the domain of IoT.
- Improve knowledge about the various cutting-edge technologies in the field IoT and machine learning applications.
- Gain insights about the current trends of machine learning and AI techniques used in IoT to orient towards the present industrial scenario.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Use of PowerPoint presentation
- 2. Think -pair and share techniques
- 3. Workshop on Arduino and Raspberry Pi
- 4. Usage of Tinker Cad tool
- 5. Overview of the real-world applications of IoT from the published papers.

III. COURSE CONTENT

Module-1 08 Hrs

Introduction to Internet of Things:

Introduction, Physical design of IOT, Logical Design of IOT, IOT enabling technologies, IOT Levels & Deployment Templates.

Textbook 1:Chapter: sections Ch-1

RBT Levels:L1, L2&L3

Module-2 08 Hrs

IoT Platforms Design Methodology

Introduction, IoT Design Methodology, Case Study on IoT System for Weather Monitoring, IoT Systems - Logical Design using Python: Introduction, Installing Python, Python Data Types and Data structures, Control flow, Functions, Modules, Packages, File Handling, Operations, Classes, Python Packages of Interest for IoT.

Textbook 1: Chapter: sections Ch- 5 5.1-5.3,6.2-6.11

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

IoT Physical Devices & End points:

What is a IoT Device, Raspberry Pi, About the Board, Linux on Raspberry Pi, Raspberry Pi interfaces, Programming Raspberry Pi with Python, Case Studies illustrating IoT design – Home Automation, Cities, Agriculture.

Textbook 1: Chapter: sections Ch-7 7.1-7.6,9.2,9.3,9.5

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Data and Analytics for IoT

Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics, Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an Operational Environment.

Textbook 2Chapter: sections Ch-5, Ch-6 (6.1 – 6.6), Ch-7 (7.1 – 7.9), Ch-10

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

IoT Physical Devices and Endpoints - Arduino UNO

Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical Devices and Endpoints - RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature from DS18B20 sensors, Remote access to RaspberryPi, Smart and Connected Cities, An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security Architecture, Smart City Use-Case Examples.

Textbook 2Chapter: sections Ch-3, Ch-4 (4.1 – 4.9), Ch-9 (9.1 – 9.5)

RBT Levels: L1, L2 & L3

IND I DC	Cis. 11, 12 & 13							
IV. COURSE OUTCOMES								
CO1	Explain the evolution of IoT, IoT networking components, and addressing strategies							
	in IoT.							
CO2	Analyze various sensing devices and actuator types.							
CO3	Demonstrate the processing in IoT.							
CO4	Apply different connectivity technologies.							
CO5	Elaborate the need for Data Analytics and Security in IoT.							

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2			2							1	1	
CO2	2	2			2							1	1	
CO3	2	2			2							1	1	
CO4	2	2			2							1	1	
CO5	2	2			2							1	1	

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
	Internet of Things- A	Arshdeep Bahga, Vijay	2014	
1.	Hands On Approach	Madisetti	2014	Universities press
	IoT Fundamentals:			
2.	Networking	David Hanes, Gonzalo		
	Technologies,	Salgueiro, Patrick		
	Protocols, and Use	Grossetete, Robert		
	Cases for the Internet of	Barton, Jerome Henry		
	Things			

VII(b): Reference Books:

1.	Internat of Thing	Spinivaga V C	2017	CENGAGE
	Internet of Things	Srinivasa K G	2017	Leaning India

VII(c): Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-cs31/
- https://docs.arduino.cc/
- https://www.arduino.cc/education/certification
- https://www.udemy.com/topic/arduino/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Mini projects by the students (2 to 4) using Arduino board and Raspberry Pi boards
- Demonstration of projects using Tinker Cad tool.

|| Jai Sri Gurudev || | Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	Emerging Technology Course(ETC)								
Course Title: Information and Network Security											
Course Code: 23CDE534 Credits: 03											
Teaching Hour	•	ŕ		Total Hours:	40						
CIE Marks:	50	SEE Marks:	50	50 Total Marks:							
SEE Type:		Theor	у	Exam Hours:	03						

I. Course Objectives:

- Analyze Digital Security Lapses
- Illustrate the Need for Key Management
- Evaluate Cryptographic Hash Functions and Their Applications
- Examine Authentication Mechanisms in Cyber security
- Demonstrate the Role of Cryptography in Network Security

II. Teaching-Learning Process (General Instructions):

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 6. Use any of these methods: Chalk and board, Active Learning, Case Studies.

III.	COURSE CONTENT	
Module-1		08 Hrs

Introduction to Cryptography, How to Speak Crypto. Classic Crypto. Simple Substitution Cipher. Cryptanalysis of a Simple Substitution. Definition of Secure. Modern Crypto History. Taxonomy of Cryptography, Taxonomy of Cryptanalysis

TextBook1: Chapter: sections Ch- 2

RBT Levels: L1, L2

Module-2 08 Hrs

What is a Hash Function? The Birthday Problem, Non-cryptographic Hashes. Tiger Hash. HMAC. Uses of Hash Functions. (Online Bids. Spam Reduction), Other Crypto-Related Topics. Random Numbers. Generating Random Bits. Information Hiding.

TextBook1: Chapter: sections Ch-5: 5.1-5.3, 5.5-5.9

RBT Levels: L1, L2 &L3

Module-3 08 Hrs

Random number generation, Providing freshness, Fundamentals of entity authentication, Passwords, Dynamic password schemes, Zero-knowledge mechanisms, Cryptographic Protocols, Protocol basics, Analysing a simple protocol, Authentication and key establishment protocols

TextBook2: Chapter: sections Ch-8: 8.1-8.6, Ch-9: 9.1-9.4

RBT Levels: L1 & L2

Module-4 08 Hrs

Key management fundamentals, Key generation Key establishment, Key storage Key usage Governing key management, Public-Key Management, Certification of public keys, Public-key management models.

TextBook2: Chapter: sections Ch-10, Ch-11

RBT Levels: L1, L2 & L3

Module-5 08 Hrs

Cryptographic Applications Cryptography on the Internet, Cryptography for wireless local area networks, Cryptography for mobile telecommunications, Cryptography for secure payment card transactions, Cryptography for identity cards, Cryptography for home users

TextBook2: Chapter: sections Ch-12

RBT Levels: L1, L2

RBT I	RBT Levels: L1, L2													
	IV. COURSE OUTCOMES													
CO1		Explain fundamental concepts of cryptography, classical encryption techniques, cryptanalysis, and security principles.												
CO2		Demonstrate the working of hash functions, HMAC, and their applications in data integrity and security.												
CO3	Analyze entity authentication mechanisms, password-based schemes, zero-knowledge proofs, and cryptographic protocols.													
CO4		valuate echan	•	mana	gemer	nt tech	nnique	s, pub	olic-ke	y infra	astruct	ure, a	nd key esta	blishment
CO5			• • •	raphic ns, and		•			l-worl	d appli	cation	s, inclu	iding networ	ks, mobile
				V.	CO-P	O-PSC) MAI	PPING	(mark	H=3;	M=2; l	L=1)		
PO/PS O	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	2	1									2	

CO2	3	3	3	2	2					2	1
CO3	3	2	2	3	2					2	1
CO4	3	3	3	3	2	2				1	
CO5	3	3	2	3	3					1	1

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	Information	Mark Stamp	2nd Edition	Wiley
	Security: Principles			
	and Practice			
2.	Everyday	Keith M. Martin	December 2013	Oxford Scholarship
	Cryptography:			Online
	Fundamental			
	Principles and			
	Applications			

VII(b): Reference Books:

1.	Applied	Bruce Schneier	January, 1996	John Wiley & Sons,
	Cryptography			Inc
	Protocols,			
	Algorithms, and			
	Source Code in C			

VII(c): Web links and Video Lectures (e-Resources):

- https://gchq.github.io/CyberChef/
- https://cryptopals.com/
- https://play.google.com/store/apps/details?id=com.northcrypt.quiz
- https://play.google.com/store/apps/details?id=com.softwarriors.cryptochallenge

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Implementation of various protocols using open source simulation tools.
- Quiz/Presentation

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	AEC					
Course Title: 1	DEVO	PS						
Course Code:		23CDAE51		Credits: 01				
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}			0:0:2:0	Total Hours:	10 - 12 lab Slots			
CIE Marks:	50	SEE Mar	ks: 50	Total Marks:	100			
SEE Type:		Prac	etical	Exam Hours:	2			

I. Course Objectives:

- To introduce DevOps terminology, definition & concepts
- To understand the different Version control tools like Git, Mercurial
- To understand the concepts of Continuous Integration/ Continuous Testing/ Continuous Deployment)
- To understand Configuration management using Ansible
- Illustrate the benefits and drive the adoption of cloud-based Devops tools to solve real world problems

Pro	Processia							
	II. COURSE CONTENT							
Sl. No.	Experiments							
1.	Introduction to Maven and Gradle: Overview of Build Automation Tools, Key							
	Differences Between Maven and Gradle, Installation and Setup							
2.	Working with Maven: Creating a Maven Project, Understanding the POM File,							
	Dependency Management and Plugins							
3	Working with Gradle: Setting Up a Gradle Project, Understanding Build Scripts							
	(Groovy and Kotlin DSL), Dependency Management and Task Automation							
4.	Practical Exercise: Build and Run a Java Application with Maven, Migrate the Same							
	Application to Gradle							
5.	Introduction to Jenkins: What is Jenkins?, Installing Jenkins on Local or Cloud							
	Environment, Configuring Jenkins for First Use							
6.	Continuous Integration with Jenkins: Setting Up a CI Pipeline, Integrating Jenkins							
	with Maven/Gradle, Running Automated Builds and Tests							
7.	Configuration Management with Ansible: Basics of Ansible: Inventory, Playbooks,							
	and Modules, Automating Server Configurations with Playbooks, Hands-On: Writing							
	and Running a Basic Playbook							
8.	Practical Exercise: Set Up a Jenkins CI Pipeline for a Maven Project, Use Ansible to							
	Deploy Artifacts Generated by Jenkins							

9. Introduction to Azure DevOps: Overview of Azure DevOps Services, Setting Up an Azure DevOps Account and Project
 10. Creating Build Pipelines: Building a Maven/Gradle Project with Azure Pipelines, Integrating Code Repositories (e.g., GitHub, Azure Repos), Running Unit Tests and Generating Reports
 11 Creating Release Pipelines: Deploying Applications to Azure App Services, Managing Secrets and Configuration with Azure Key Vault, Hands-On: Continuous Deployment with Azure Pipelines
 12 Practical Exercise and Wrap-Up: Build and Deploy a Complete DevOps Pipeline, Discussion on Best Practices and Q&A

Instructions for conduction of practical part:

- LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.
- •Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

III. COURSE OUTCOMES

CO1	Demonstrate different actions performed through Version control tools like Git.
CO2	Perform Continuous Integration and Continuous Testing and Continuous Deployment
	using Jenkins by building and automating test cases using Maven & Gradle.
CO3	Experiment with configuration management using Ansible.
CO4	Demonstrate Cloud-based DevOps tools using Azure DevOps.

IV. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
SO														
CO1	3	2	2	2	2							2	2	1
CO2	2	2	2	2	2							2	2	1
CO3	2	2	2	2	2							2	2	1
CO4	2	2	2	2	2							2	2	

V. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

VI. Learning Resources

Suggested Learning Resources:

- https://www.geeksforgeeks.org/devops-tutorial/
- https://www.javatpoint.com/devops
- https://www.youtube.com/watch?v=2N-59wUIPVI
- https://www.youtube.com/watch?v=87ZqwoFeO88

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Practical Based Learning.

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi

Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Co	ourse Type:	AEC				
Course Title:	Mobil	le Apj	plication Dev	velopr	nent with Flutter			
Course Cod	e:	23	3CDAE52	Credits: 01				
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}			0:0:2:0	Total Hours:	10-12 Lab slots			
CIE Marks	50	0	SEE Ma	rks:	50	Total Marks:	100	
SEE Type	e: Practical					Exam Hours:	2	

I. Course Objectives:

This course will enable students to:

- To introduce basics of Flutter platform for progressive app development
- To gain knowledge on user interface support in Flutter.
- To learn various programming elements required for app development.
- To develop progressive applications with flutter.

II. Teaching-Learning Process (General Instructions):

Note: The following programs should be implemented using flutter framework.

III. COURSE CONTENT Sl. **Experiments** No. Develop an application using Flutter to print "Hello world and Hello Flutter". 1. 2. Develop an application using Flutter to Increment and Decrement Numbers (Counter App). 3 Develop Login Screen Application. 4. Develop a "To-do List" Application. Develop Calculator Application. 5. 6. Develop an application to Check the Weather in Countries Across the world (Weather app). Develop a "Stopwatch" application using Flutter. 7. Develop an application that Navigate from one Screen to another (Seamless navigation). 8. 9. Develop Basic E-commerce UI Application. 10. Develop an application to implement Animates Logo. 11 Develop an application that tracks our daily Expenses and get a report chart. Develop an application to Play Quiz and get the Score Board. 12

Instructions for conduction of practical part:

- LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.
- •Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

IV. COURSE OUTCOMES Demonstrate basics elements Flutter platform for progressive app development. Develop user interface designs for applications. Experiment with different programming elements of app development.

CO₃ Develop progressive applications for real-world problems.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

									`	,	,	,		
PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
so														
CO1	3	2	2	2	2							2	2	1
CO2	2	2	2	2	2							2	2	1
CO3	2	2	2	2	2							2	2	1
CO4	2	2	2	2	2							2	2	

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

VII. **Learning Resources**

Suggested Learning Resources:

• https://flutter.dev/

CO₁

CO₂

CO₄

- https://developers.google.com/learn/pathways/intro-to-flutter
- https://github.com/flutter/flutter
- https://www.geeksforgeeks.org/flutter-tutorial/
- https://www.tutorialspoint.com/flutter/index.htm

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Practical Based Learning.

| Jai Sri Gurudev | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	Course Type:	AEC					
Course Title: Generative AI								
Course Cod	le:	23CDAE53			01			
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}				0:0:2:0	Total Hours:	10-12 Lab slots		
CIE Marks	s: 50	SEE Ma	arks:	50	Total Marks:	100		
SEE Type	Type: Practical				Exam Hours:	2		

I. Course Objectives:

This course will enable students to:

- Understand the principles and concepts behind generative AI models
- Explain the knowledge gained to implement generative models using Prompt design frameworks.
- Apply various Generative AI applications for increasing productivity.
- Develop Large Language Model-based Apps.

II. Teaching-Learning Process (General Instructions):

Note: The following programs should be implemented in python language.

Note: T	Note: The following programs should be implemented in python language.								
	III. COURSE CONTENT								
Sl. No.	Experiments / Programs / Problems								
1.	Explore pre-trained word vectors. Explore word relationships using vector arithmetic.								
	Perform arithmetic operations and analyze results.								
2.	Use dimensionality reduction (e.g., PCA or t-SNE) to visualize word embeddings for Q								
	1. Select 10 words from a specific domain (e.g., sports, technology) and visualize their								
	embeddings. Analyze clusters and relationships. Generate contextually rich outputs using								
	embeddings. Write a program to generate 5 semantically similar words for a given input.								
3	Train a custom Word2Vec model on a small dataset. Train embeddings on a domain-								
	specific corpus (e.g., legal, medical) and analyze how embeddings capture domain-								
	specific semantics.								
4.	Use word embeddings to improve prompts for Generative AI model. Retrieve similar								
	words using word embeddings. Use the similar words to enrich a GenAI prompt. Use the								
	AI model to generate responses for the original and enriched prompts. Compare the								
	outputs in terms of detail and relevance.								
5.	Use word embeddings to create meaningful sentences for creative tasks. Retrieve similar								
	words for a seed word. Create a sentence or story using these words as a starting point.								

	Write a program that: Takes a seed word. Generates similar words. Constructs a short
	paragraph using these words.
6.	Use a pre-trained Hugging Face model to analyze sentiment in text. Assume a real-world
	application, Load the sentiment analysis pipeline. Analyze the sentiment by giving
	sentences to input.
7.	Summarize long texts using a pre-trained summarization model using Hugging face
	model. Load the summarization pipeline. Take a passage as input and obtain the
	summarized text.
8.	Install langchain, cohere (for key), langchain-community. Get the apikey(By logging
	into Cohere and obtaining the cohere key). Load a text document from your googledrive.
	Create a prompt template to display the output in a particular manner.
9.	Take the Institution name as input. Use Pydantic to define the schema for the desired
	output and create a custom output parser. Invoke the Chain and Fetch Results. Extract the
	below Institution related details from Wikipedia: The founder of the Institution. When it
	was founded. The current branches in the institution . How many employees are working
	in it. A brief 4-line summary of the institution.
10.	Build a chatbot for the Indian Penal Code. We'll start by downloading the official Indian
	Penal Code document, and then we'll create a chatbot that can interact with it. Users will
	be able to ask questions about the Indian Penal Code and have a conversation with it.

Instructions for conduction of practical part:

- LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.
- •Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

presen	presentations, or demonstrations.													
	IV. COURSE OUTCOMES													
CO1	CO1 Develop the ability to explore and analyze word embeddings, perform vector arithmetic to investigate word relationships, visualize embeddings using dimensionality reduction techniques													
CO2	CO2 Apply prompt engineering skills to real-world scenarios, such as information retrieval, text generation													
CO3	CO3 Utilize pre-trained Hugging Face models for real-world applications, including sentiment analysis and text summarization													
CO4					chitectu Ivantag			_	_	age m	odels,	such	as transform	ners, and
				V. C	O-PO-	PSO N	ИАРР	ING	(mark	H=3;	M=2;	L=1)		
PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
so														
CO1	3	2	2	2	2							2	2	1
CO2	2	2	2	2	2							2	2	1
CO3	2	2	2	2	2							2	2	1
CO4	2	2	2	2	2							2	2	

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Modern Generative AI with ChatGPT and OpenAI Models: Leverage the Capabilities of OpenAI's LLM for Productivity and Innovation with GPT3 and GPT4	Valentina Alto	2023	Packt Publishing Ltd

VII(b): Reference Books:

1	Generative AI for Cloud Solutions: Architect modern AI LLMs in secure, scalable, and ethical cloud	Paul Singh, AnuragKaruparti	2024	Packt Publishing Ltd
	environment			

VII(c): Web links and Video Lectures (e-Resources):

- https://youtu.be/eTPiL3DF27U
- https://youtu.be/je6AlVeGOV0
- https://youtu.be/RLVqsA8ns6k
- https://youtu.be/0SAKM7wiC-A
- https://youtu.be/28 9xMyrdjg
- https://youtu.be/8iuiz-c-EBw
- https://youtu.be/7oQ8VtEKcgE
- https://youtu.be/seXp0VWWZV0

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- 1. Assignments, Quizzes and Seminar
- 2. Real world problem solving and puzzles using group discussion. E.g., AI-Generated Fake News Detection, AI Bias & Fairness Puzzleetc

| Jai Sri Gurudev | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Course Title: React Course Code: 23CDAE54 Credits: 01 Teaching Hours/Week (L:T:P:O) 0:0:2:0 Total Hours: 10-12 Lab slots	Semester: V Course Type: AEC									
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @} 0:0:2:0 Total Hours: 10-12 Lab slots	Course Title: React									
{O - Other pedagogies, mention @} O:0:2:0 Total Hours: slots	Course Code: 23CDAE54 Credits: 01									
		tal Hours:	0:0:2:0							
CIE Marks: 50 SEE Marks: 50 Total Marks: 100	CIE Marks:	tal Marks: 100	50	arks:						
SEE Type: Practical Exam Hours: 2	SEE Type:	m Hours: 2		actical	SEE Type: Practical					

I. Course Objectives:

- Enable students to develop React applications utilizing functional and class-based components, effectively managing state with hooks and lifecycle methods.
- Introduce, how to pass data dynamically between parent and child components using props, ensuring modular and reusable component design.
- Create dynamic and responsive applications, integrating forms, validation, task management systems, and styled components.
- Use React Router for navigation, external API integration for dynamic data handling, and CSS styling techniques for modern UI/UX design.

II. Teaching-Learning Process (General Instructions):

Note: The following programs should be implemented in nython language

Note: The following programs should be implemented in python language.										
	III. COURSE CONTENT									
Sl. No.	Experiments / Programs / Problems									
1.	Use create-react-app to set up a new project. Edit the App.js file to include a stateful component with useState. Add an input field and a <h1>element that displays text based on the input. Dynamically update the content as the user types.</h1>									
2.	Develop a React application that demonstrates the use of props to pass data from a parent component to child components. The application should include the parent component named App that serves as the central container for the application. Create two separate child components, Header: Displays the application title or heading. Footer: Displays additional information, such as copyright details or a tagline. Pass data (e.g., title, tagline, or copyright information) from the App component to the Header and Footer components									

using props. Ensure that the content displayed in the Header and Footer components is
dynamically updated based on the data received from the parent component.

- Create a Counter Application using React that demonstrates state management with the useState hook. Display the current value of the counter prominently on the screen. Add buttons to increase and decrease the counter value. Ensure the counter updates dynamically when the buttons are clicked. Use the useState hook to manage the counter's state within the component. Prevent the counter from going below a specified minimum value (e.g., 0). Add a "Reset" button to set the counter back to its initial value. Include functionality to specify a custom increment or decrement step value.
- 4. Develop a To-Do List Application using React functional components that demonstrates the use of the useState hook for state management. Create a functional component named ToDoFunction to manage and display the to do list. Maintain a list of tasks using state. Provide an input field for users to add new tasks. Dynamically render the list of tasks below the input field. Ensure each task is displayed in a user-friendly manner. Allow users to delete tasks from the list. Mark tasks as completed or pending, and visually differentiate them.
- Develop a React application that demonstrates component composition and the use of props to pass data. Create two components: FigureList: A parent component responsible for rendering multiple child components. BasicFigure: A child component designed to display an image and its associated caption. Use the FigureList component to dynamically render multiple BasicFigure components. Pass image URLs and captions as props from the FigureList component to each BasicFigure component. Style the BasicFigure components to display the image and caption in an aesthetically pleasing manner. Arrange the BasicFigure components within the FigureList in a grid or list format. Allow users to add or remove images dynamically. Add hover effects or animations to the images for an interactive experience.
- Design and implement a React Form that collects user input for name, email, and password. Form Fields are Name, Email, Password. Ensure all fields are filled before allowing form submission. Validate the email field to ensure it follows the correct email format (e.g., example@domain.com). Optionally enforce a minimum password length or complexity. Display error messages for invalid or missing inputs. Provide visual cues (e.g., red borders) to highlight invalid fields. Prevent form submission until all fields pass validation. Log or display the entered data upon successful submission (optional). Add a "Show Password" toggle for the password field. Implement client side sanitization to ensure clean input.
- Develop a React Application featuring a ProfileCard component to display a user's profile information, including their name, profile picture, and bio. The component should demonstrate flexibility by utilizing both external CSS and inline styling for its design. Display the following information: Profile picture, User's name, A short bio or description Use an external CSS file for overall structure and primary styles, such as layout, colors, and typography. Apply inline styles for dynamic or specific styling elements, such as background colors or alignment. Design the ProfileCard to be visually appealing and responsive. Ensure the profile picture is displayed as a circle, and the name and bio are appropriately styled. Add hover effects or animations to enhance interactivity. Allow the background color of the card to change dynamically based on a prop or state.

- **8.** Develop a React Application featuring a ProfileCard component to display a user's profile information, including their name, profile picture, and bio. The component should demonstrate flexibility by utilizing both external CSS and inline styling for its design. Display the following information: Profile picture, User's name, A short bio or description Use an external CSS file for overall structure and primary styles, such as layout, colors, and typography. Apply inline styles for dynamic or specific styling elements, such as background colors or alignment. Design the ProfileCard to be visually appealing and responsive. Ensure the profile picture is displayed as a circle, and the name and bio are appropriately styled. Add hover effects or animations to enhance interactivity. Allow the background color of the card to change dynamically based on a prop or state.
 - 9Design a React application that demonstrates the implementation of routing using the react-router-dom library. The application should include the Navigation Menu: Create a navigation bar with links to three distinct pages, Home, About, Contact. Develop separate components for each page (Home, About, and Contact) with appropriate content to differentiate them. Configure routes using react-router-dom to render the corresponding page component based on the selected link. Use BrowserRouter and Route components for routing. Highlight the active link in the navigation menu to indicate the current page
- Design a React application featuring a class-based component that demonstrates the use of lifecycle methods to interact with an external API. The component should fetch and update data dynamically based on user interactions or state changes. Use the componentDidMount lifecycle method to fetch data from an API when the component is initially rendered. Display the fetched data in a structured format, such as a table or list. Use the componentDidUpdate lifecycle method to detect changes in the component's state or props. Trigger additional API calls to update the displayed data based on user input or actions (e.g., filtering, searching, or pagination). Implement error handling to manage issues such as failed API requests or empty data responses. Display appropriate error messages to the user when necessary. Allow users to perform actions like filtering, searching, or refreshing the data. Reflect changes in the displayed data based on these interactions.

Instructions for conduction of practical part:

- LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.
- •Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

	IV. COURSE OUTCOMES								
CO1	Illustrate React basics and state components.								
CO2	Develop React applications that utilize component composition, passing data through props.								
CO3	Use dynamic state updates, event handling, and custom logic to increment, decrement, and reset state values.								

CO4	Implement forms in React that collect and validate user input.
CO5	Implement forms in React that collect and validate user input.

									`	,				
PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
SO														
CO1	3	2	2	2	2							2	2	1
CO2	2	2	2	2	2							2	2	1
CO3	2	2	2	2	2							2	2	1
CO4	2	2	2	2	2							2	2	
CO5	2	2	2	2	2							2	2	

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Beginning React JS			
	Foundations Building User	Chris Minnick,	2022.	Wiley publications
	Interfaces with ReactJS:	Chris Willinger,	2022.	whey publications
	An Approachable Guide,			
2	Learning React Functional			
	Web Development with	Alex Banks, Eve Porcello ·	2017	
	React and Redux,			

VII(c): Web links and Video Lectures (e-Resources):

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=V9i3cGD-mts
- https://youtu.be/PHaECbrKgs0
- https://youtu.be/uvEAvxWvwOs
- https://www.geeksforgeeks.org/state-management-with-usestate-hook-in-react/
- https://youtu.be/KU-I2M9Jm68
- https://youtu.be/H63Pd_lXkeQ
- https://youtu.be/oTIJunBa6MA
- https://youtu.be/3EbYJrAOpU

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Practical Based Learning

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:	PCC							
Course Title: Big Data Analytics										
Course Code	: 2	23CDT601		Credits:	3					
Teaching Hour	s/Week ((L:T:P:O)	3:0:0:0	Total Hours:	40					
CIE Marks:	50	SEE Marks:	50	Total Marks:	100					
SEE Type:		Theory	7	Exam Hours:	3 hrs					

I. Course Objectives:

- To implement MapReduce programs for processing big data.
- To realize storage and processing of big data using MongoDB, Pig, Hive and Spark.
- To analyze big data using machine learning techniques.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 6. Use any of these methods: Chalk and board, Active Learning, Case Studies.

III. COURSE CONTENT

Module-1 08 Hrs

Classification of data, Characteristics, Evolution and definition of Big data, What is Big data, Why Big data, Traditional Business Intelligence Vs Big Data, Typical data warehouse and Hadoop environment. Big Data Analytics: What is Big data Analytics, Classification of Analytics, Importance of Big Data Analytics, Technologies used in Big data Environments, Few Top Analytical Tools, NoSQL, and Hadoop.

TextBook1: Chapter: sections Ch-1: 1.1, Ch-2: 2.1-2.5,2.7,2.9-2.11, Ch-3: 3.2,3.5,3.8,3.12, Ch-4: 4.1,4.2

RBT Levels: L1, L2 & L3

Module-2 08 Hrs

Introduction to Hadoop: Introducing hadoop, Why hadoop, Why not RDBMS, RDBMS Vs Hadoop, History of Hadoop, Hadoop overview, Use case of Hadoop, HDFS (Hadoop Distributed File System), Processing data with Hadoop, Managing resources and applications with Hadoop YARN(Yet Another Resource Negotiator). **Introduction to Map Reduce Programming:** Introduction, Mapper, Reducer, Combiner, Partitioner, Searching, Sorting, Compression.

TextBook1: Chapter: sections Ch-5: 5.1-,5.8, 5.10-5.12, Ch-8: 8.1 - 8.8

RBT Levels: L1, L2 & L3

Module-3 08 Hrs

Introduction to MongoDB: What is MongoDB, Why MongoDB, Terms used in RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language.

TextBook1: Chapter: sections Ch-6: 6.1-6.5

RBT Levels: L1, L2 & L3

Module-4 08 Hrs

Introduction to Hive: What is Hive, Hive Architecture, Hive data types, Hive file formats, Hive Query Language (HQL), RC File implementation, User Defined Function (UDF). **Introduction to Pig:** What is Pig, Anatomy of Pig, Pig on Hadoop, Pig Philosophy, Use case for Pig, Pig Latin Overview, Data types in Pig, Running Pig, Execution Modes of Pig, HDFS Commands, Relational Oaperators, Eval Function, Complex Data Types, Piggy Bank, User Defined Function, Pig Vs Hive.

TextBook1: Chapter: sections Ch-9: 9.1-9.6,9.8, Ch-10: 10.1 - 10.15, 10.22

RBT Levels: L1, L2 & L3

Module-5 08 Hrs

Spark and Big Data Analytics: Spark, Introduction to Data Analysis with Spark. **Text, Web Content and LinkAnalytics**: Introduction, Text Mining, Web Mining, Web Content and Web Usage Analytics, Page Rank, Structure of Web and Analyzing a Web Graph.

TextBook2: Chapter: sections Ch-5: 5.2,5.3, Ch-9: 9.1-9.4

RBT Levels: L1, L2 & L3

	IV. COURSE OUTCOMES							
CO1	Identify and list various Big Data concepts, tools and applications.							
CO2	Develop programs using HADOOP framework.							
CO3	Make use of Hadoop Cluster to deploy MapReduce jobs, PIG, HIVE and Spark programs.							
CO4	Analyze the given data set and identify deep insights from the dataset.							
CO5	Demonstrate Text, Web Content and Link Analytics.							

	V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)													
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3			2								1	
CO2	2	2	2		2								2	2
CO3	2	2	3		3						2		1	2
CO4		3		3	3					2			2	2
CO5		2		2	3					2			2	2

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Big data and	Seema Acharya and	2nd Edition, 2019	Wiley India
	Analytics	Subhashini		Publishers
		Chellappan		
2	Big Data	Raj kamal and Preeti	2019	McGraw Hill
	Analytics,	Saxena		Publication
	Introduction to			
	Hadoop, Spark			
	and Machine			
	Learning			

VII(b): Reference Books:

1	MapReduce	Adam Shook and	2012	O'Reilly
	Design Patterns:	Donald Mine		
	Building Effective			
	Algorithms and			
	Analytics for			
	Hadoop and Other			
	Systems			
2	Hadoop: The	Tom White	4th Edition, 2015	O'reilly Media
	Definitive Guide			
3	Big Data	Thomas Erl, Wajid	1st Edition, 2016	Pearson India
	Fundamentals:	Khattak, and Paul		Education Service
	Concepts, Drivers	Buhler		Pvt. Ltd
	& Techniques			

4	Fundamentals of	John D. Kelleher,	2nd Edition, 2020	MIT Press
	Machine Learning	Brian Mac Namee,		
	for Predictive	Aoife D'Arcy		
	Data Analytics:			
	Algorithms,			
	Worked Examples			

VII(c): Web links and Video Lectures (e-Resources):

- https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
- https://www.youtube.com/watch?v=bAyrObl7TYE&list=PLEiEAq2VkUUJqp1k-g5W1mo37urJQOdCZ
- https://www.youtube.com/watch?v=VmO0QgPCbZY&list=PLEiEAq2VkUUJqp1kg5W1mo3 7urJQOdCZ&in dex=4
- https://www.youtube.com/watch?v=GG-VRm6XnNk
- https://www.youtube.com/watch?v=JglO2Nv_92A

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Implement MongoDB based application to store big data for data processing and analyzing the results [10 marks]

(OR)

Implement Hive based application to store big data for data processing and analyzing the results.

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	1	VI (Course Type:	IPCC								
Course Title: Deep Learning												
Course C	ode:	2	23CDI602	Credits: 4								
Teaching H	Iours	/Week (L:T:P:O)	3:0:2:0	Total Hours:	40 + 8-10 Lab						
${O - Other}$	pedag	gogies, m	nention @}	3.0.2.0	Total Hours.	slots						
CIE Mai	rks:	50	SEE Marks:	50	100							
SEE Ty	pe:		Theory	,	03							

I. Course Objectives:

- Understand the fundamentals of deep learning.
- Understanding the working of Convolution Neural Networks and RNN in decision making.
- Illustrate the strength and weaknesses of many popular deep learning approaches.
- Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

III(a). Theory PART

Module-1 08 Hrs

Introduction: What is a Neural Network?, The Human Brain, Models of a Neuron, Neural Networks Viewed As Directed Graphs, Feedback, Network Architectures, **Rosenblatt"s Perceptron:** Introduction, Perceptron, The Perceptron Convergence Theorem, Relation Between the Perceptron and Bayes Classifier for a Gaussian Environment.

RBT Levels: L1, L2 & L3

Module-2 8 Hrs

Multilayer Perceptrons: Introduction, Batch Learning and On-Line Learning, The Back-Propagation Algorithm, XOR Problem, Heuristics for Making the Back-Propagation Algorithm Perform Better, Back Propagation and Differentiation.

RBT Levels: L1, L2 & L3

Module-3 08 Hrs

Regularization for Deep Learning: Parameter Norm Penalties - L2 Parameter Regularization, Dataset Augmentation, Semi-Supervised Learning. Optimization for Training Deep Models: Challenges in Neural Network Optimization – Ill Conditioning, Local Minima, Plateaus, Saddle Points and Other Flat Regions.

RBT Levels: L1,L2 & L3

Module-4 08 Hrs

Convolution neural networks: The Convolution Operation, Motivation, Pooling, Convolution and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function, Structured Outputs, Data Types, Efficient Convolution Algorithms, Convolutional Networks and the History of Deep Learning.

RBT Levels:L1,L2 & L3

Module-5 08 Hrs

Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to- Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-Term Memory and Other Gated RNNs.

RBT Levels: L1,L2,L3

III(b). PRACTICAL PART

Sl. No.	Experiments
1	Design and implement a neural based network for generating word embedding for
	words in a document corpus.
2	Write a program to demonstrate the working of a deep neural network for classification
	task.
3	Design and implement a Convolutional Neural Network (CNN) for classification of
	image dataset
4	Build and demonstrate an auto encoder network using neural layers for data
	compression on image dataset.

5	Build and demonstrate an auto encoder network using neural layers for data											
	compression on image dataset.											
6	Design and implement a deep learning network for forecasting time series data.											
7	Write a program to enable pre-train models to classify a given image dataset.											
8	Write a program to read a dataset of text reviews. Classify the reviews as positive or negative.											

Instructions for conduction of practical part:

- For the Simulation experiments modify the topology and parameters set for the experiment and take multiple rounds of reading and analyze the results available in log files. Plot necessary graphs and conclude using NS2 or NS3.
- Installation procedure of the required software must be demonstrated, carried out in groups, and documented in the report. Non simulation programs can be implemented using Java.

IV. COURSE OUTCOMES														
CO1	A	Analyze and interpret the concepts of neural networks relating to artificial intelligence.												
CO2	I	Illustrate the learning processes and their statistical properties.												
CO3	Ι	Design deep learning models using regularization and convolutional operations.												
CO4	A	Analyz	ze seq	uentia	l data	to bui	ld rec	urrent	and re	ecursi	ve mo	dels		
CO5	Ι	Develo	op and	analy	ze the	appli	cation	ıs usin	g Aut	oenco	ders.			
	V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)													
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
\circ														

	V. CO-FO-FSO MAFFING (IIIalk fi=5, M=2, L=1)													
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	2	2			1								1	
CO2	2	2	2		2								2	1
CO3	2	2	3		3						2		1	1
CO4	2	3		3	3					2			2	1
CO5	2	3	2	3	2					2	2		2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE):Refer Annexure Section 2

Semester End Examination (SEE): Refer Annexure Section 2

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1.	Neural networks	Simon Haykin,	Third Edition, 2016	Pearson,
	and Learning			
	Machines,			
2	Deep Learning,	Ian Good fellow,	2016.	MIT Press,
		Yoshua Bengio and		
		Aaron Courville,		

VII(c): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=VyWAvY2CF9c

https://www.youtube.com/watch?v=7sB052Pz0sQ

https://www.youtube.com/watch?v=Mubj_fqiAv8

https://www.coursera.org/learn/neural-networks-deep-learning

https://onlinecourses.nptel.ac.in/noc20_cs62/preview.

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

• Mini projects (2 to 4 students) using Deep Learning concepts - 10 marks

| Jai Sri Gurudev | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:	PCCL									
Course Title:	Course Title: Big Data Analytics Lab											
Course Cod	e:	23CDL603		Credits:	1							
Teaching Hou {O – Other pe		` '	0:0:2:0	Total Hours:	10-12 Lab slots							
CIE Marks:	50	SEE Marks:	50	Total Marks:	100							
SEE Type:		Practica	1	Exam Hours:	3 hrs							

I. Course Objectives:

- Understand the fundamentals of Big Data processing and its frameworks.
- Learn to work with Hadoop, MapReduce, and NoSQL databases for large-scale data handling.
- Gain hands-on experience with Pig, Hive, and Spark for data processing and querying.
- Apply Big Data tools and techniques to solve real-world data analytics challenges.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.
- 6. Use any of these methods: Chalk and board, Active Learning, Case Studies.

	III. PRACTICAL										
Sl. No.	Experiments										
1.	Install Hadoop and Implement the following file management tasks in Hadoop:										
	 Adding files and directories 										
	 Retrieving files 										
	 Deleting files and directories. 										
	Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and										

	copies them into HDFS using one of the above command line utilities.
	TextBook1: Chapter: sections Ch-2
2.	Develop a MapReduce program to implement Matrix Multiplication
	TextBook1: Chapter: sections Ch-5
3.	Develop a Map Reduce program that mines weather data and displays appropriate
	messages indicating the weather conditions of the day
	TextBook1: Chapter: sections Ch-5
4.	Develop a MapReduce program to find the tags associated with each movie by
	analyzing movie lens data.
	TextBook1: Chapter: sections Ch-5
5.	Implement Functions: Count – Sort – Limit – Skip – Aggregate using MongoDB
	TextBook2: Chapter: sections Ch-6
6.	Develop Pig Latin scripts to sort, group, join, project, and filter the data.
	TextBook1: Chapter: sections Ch-7
7.	Use Hive to create, alter, and drop databases, tables, views, functions, and indexes.
	TextBook1: Chapter: sections Ch-8
8.	Implement a word count program in Hadoop and Spark.
	TextBook2: Chapter: sections Ch-4
9.	Use CDH (Cloudera Distribution for Hadoop) and HUE (Hadoop User Interface) to
	analyze data and generate reports for sample datasets
	TextBook2: Chapter: sections Ch-3

Instructions for conduction of practical part:

- LAB Activities: Conduct laboratory exercises, prepare lab reports, observations and analyze results, perform lab tests, and work on design and implementation tasks.
- Experiential Learning: Students will be evaluated based on their creativity and practical problem-solving skills. This includes program-specific requirements and video-based seminars, presentations, or demonstrations.

III. COURSE OUTCOMES														
CO1	Im	Implement Hadoop file management operations and explore HDFS storage.												
CO2		Develop MapReduce programs to process and analyze structured and unstructured data.												
CO3	U	se M	ongol	DB, P	ig, and	d Hive	e for h	andlin	ig and	query	ing la	rge-sc	ale datasets.	•
CO4		Implement Hadoop and Spark-based data processing techniques for real-world applications.												
CO5	1 -	ply tasets	_	ata to	ols (C	Cloud	era, F	HUE)	to ge	nerate	insig	hts an	d reports fr	om sample
]	IV. C	O-PO)-PSC) MA	PPIN	G(mar	k H=3	B; M=2	2; L=1)	
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	3	2	3	1									2	
CO2	3	3	3	2	1								2	
CO3	3	3	3	2	3	1							2	

CO4	2	2	3	3	2	1	1				2	
CO5	2	3	3	3	2	2	1	1			2	

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 4

Semester End Examination (SEE): Refer Annexure Section 4

VI. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Big data and	Seema Acharya and	2nd Edition, 2019	Wiley India
	Analytics	Subhashini		Publishers
		Chellappan		
2	Big Data	Rajkamal and Preeti	2019	McGraw Hill
	Analytics,	Saxena		Publication
	Introduction to			
	Hadoop, Spark			
	and Machine			
	Learning			

VII(b): Reference Books:

1	Hadoop: The	Tom White	4th Edition, 2015	O'reilly Media
	Definitive Guide			
2	Fundamentals of	John D. Kelleher,	2nd Edition, 2020	MIT Press
	Machine Learning	Brian Mac Namee,		
	for Predictive	Aoife D'Arcy		
	Data Analytics:			
	Algorithms,			
	Worked Examples			

VII(c): Web links and Video Lectures (e-Resources):

- https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoopcommon/FileSystemShell.html
- https://www.javatpoint.com/matrix-multiplication-mapreduce
- https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduceclient-core/MapReduceTutorial.html
- https://www.mongodb.com/docs/manual/
- https://www.javatpoint.com/apache-pig
- https://gethue.com

|| <mark>Jai Sri Gurude</mark>v || Sri Adichunchanagiri Shikshana Trust (R) BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi. Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:	PEC			
Course Title:	Natur	al Language Pro	ocessin	ng		
Course Cod	le:	23CDP621			Credits:	03
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}				3:0:0:0	Total Hours:	40
CIE Marks	50	O SEE Ma	rks:	50	Total Marks:	100
SEE Type	:	T	heory		Exam Hours:	03

Course Objectives: I.

This course will enable students to:

- Learn the importance of natural language modeling
- Understand the applications of natural language processing
- Study spelling, error detection and correction methods and parsing techniques in NLP
- Illustrate the information retrieval models in natural language processing

II. Teaching-Learning Process (General Instructions):

These are sample strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only the traditional lecture method, but different types of teaching methods may be adopted to achieve the outcomes.
- 2. Utilize video/animation films to illustrate the functioning of various concepts.
- 3. Promote collaborative learning (Group Learning) in the class.
- 4. Pose at least three HOT (Higher Order Thinking) questions in the class to stimulate critical thinking.
- 5. Incorporate Problem-Based Learning (PBL) to foster students' analytical skills and develop their ability to evaluate, generalize, and analyze information rather than merely recalling it.
- 6. Introduce topics through multiple representations.
- 7. Demonstrate various ways to solve the same problem and encourage students to devise their own creative solutions.

- 8. Discuss the real-world applications of every concept to enhance students' comprehension.
- 9. Use any of these methods: Chalk and board, Active Learning, Case Studies.

III. CO URSE CONTENT

Module-1: 08 Hrs

Introduction: What is Natural Language Processing? Origins of NLP, Language and Knowledge, The Challenges of NLP, Language and Grammar, Processing Indian Languages, NLP Applications. Language Modeling: Statistical Language Model - N-gram model (unigram, bigram), Paninion Framework, Karaka theory.

Textbook1: Chapter: sections Ch:1,2

RBT Levels: L1, L2 & L3

Module-2: 08 Hrs

Word Level Analysis: Regular Expressions, Finite-State Automata, Morphological Parsing, Spelling Error Detection and Correction, Words and Word Classes, Part-of Speech Tagging. Syntactic Analysis: Context-Free Grammar, Constituency, Top-down and Bottom-up Parsing, CYK Parsing.

Textbook1: Chapter: sections 3,4

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Information Retrieval: Design Features of Information Retrieval Systems, Information Retrieval Models - Classical, Non-classical, Alternative Models of Information Retrieval - Custer model, Fuzzy model, LSTM model, Major Issues in Information Retrieval. Lexical Resources: WordNet, FrameNet, Stemmers, Parts-of-Speech Tagger, Research Corpora.

Textbook 1:Chapter: sections - Ch: 9, 12

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Information Retrieval: Design Features of Information Retrieval Systems, Information Retrieval Models - Classical, Non-classical, Alternative Models of Information Retrieval - Custer model, Fuzzy model, LSTM model, Major Issues in Information Retrieval. Lexical Resources: WordNet, FrameNet, Stemmers, Parts-of-Speech Tagger, Research Corpora.

Textbook1:Chapter:sections Ch: 9,12

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Machine Translation: Language Divergences and Typology, Machine Translation using Encoder-Decoder, Details of the Encoder-Decoder Model, Translating in Low-Resource Situations, MT Evaluation, Bias and Ethical Issues.

Textbook 2: Chapter: sections Ch:13

RBT Levels: L1, L2 & L3

	IV. COURSE OUTCOMES													
CO1		Apply the fundamental concept of NLP, grammar-based language model and statistical-based language model.												
CO2	Exp	Explain morphological analysis and different parsing approaches.												
СОЗ		Develop the Naïve Bayes classifier and sentiment analysis for Natural language problems and text classifications.												
CO4	App	ly the	conc	epts of	f infor	matio	n retri	eval, l	exical	sema	ntics,	lexical d	ictionarie	es.
CO5	CO5 Apply the concepts of information retrieval, lexical semantics, lexical dictionaries.								es.					
	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	1	1										2	
CO2	1	3	2									1	2	
CO3	1	2	3									1	2	
CO4	2	1	1	2								1	2	
CO5	1	2	2	2								1	2	

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
	"Natural Language	Tanveer Siddiqui,	2012	Oxford University
1	Processing and	U.S. Tiwary,		Press.
	Information Retrieval",			
	"Speech and Language	Daniel Jurafsky,	2023	Pearson
	Processing, An	James H. Martin,		Education,
	Introduction to Natural			
2	Language Processing,			
	Computational			
	Linguistics, and Speech			
	Recognition",			
T7TT/1	D O D I /T	1.1.		•

VII(b): Reference Books:(Insert or delete rows as per requirement)

	"Natural Language	Dan Sullivan,	1st Edition, 2015.	Pearson Education
1	Processing Recipes -		(ISBN13: 978-	India,
1	Unlocking Text Data		9332557338)	
	with Machine Learning			

	and Deep Learning using			
	Python",			
	"Understanding Natural	T V Geetha,	2024.	Pearson,
	Language Processing –			
2	Machine Learning and			
	Deep Learning			
	Perspectives",			

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/watch?v=M7SWr5xObkA
- 2. https://youtu.be/02QWRAhGc7g
- 3. https://www.youtube.com/watch?v=CMrHM8a3hqw
- 4. https://onlinecourses.nptel.ac.in/noc23 cs45/preview
- 5. https://archive.nptel.ac.in/courses/106/106/106106211/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science Engineering (Data Science)

Semester:	VI C	ourse Type:	PEC			
Course Title:	Block ch	ain Technolo	ogies			
Course Coo	łe:	23CDP622			Credits:	03
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}				3:0:0:0	Total Hours:	40
CIE Marks:	50	SEE Ma	rks:	50	Total Marks:	100
SEE Type:		T	heory		Exam Hours:	03

I. Course Objectives:

- Understand Blockchain terminologies with its applications. design
- Learn working principles of Blockchain and methodologies used in Bitcoin
- Gain knowledge on Ethereum Network, Wallets, Nodes, Smart contract &DApps
- Learn blockchain Based Application Architecture using Hyper-ledger and the Smart Contract Lifecycle.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation/Demonstration to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Use animations/videos to help the students to understand the concepts.

Module-1: 08 Hrs

Introduction to Block chain and Consensus Mechanisms

Distributed systems, CAP theorem, Byzantine Generals problem, Consensus. The history of blockchain, Introduction to blockchain, Various technical definitions of blockchains, Generic elements of a blockchain, Features of a blockchain, Applications of blockchain technology, Tiers of blockchain technology, Consensus in blockchain, CAP theorem and blockchain, Benefits and

limitations of block chain.

Textbook 1:Chapter: sections Ch-1(1.1-1.10)

RBT Levels:L1, L2&L3

Module-2: 08 Hrs

Decentralization and Cryptographic Primitives in Blockchain

Decentralization using blockchain, Methods of decentralization, Blockchain and full ecosystem decentralization, Smart contract, Decentralized organizations, Decentralized autonomous organizations, Decentralized autonomous societies Decentralized applications, Platforms for decentralization. Cryptographic primitives: Symmetric cryptography, Asymmetric cryptography, Public and private keys, Hash functions: Compression of arbitrary messages into fixed length digest, Easy to compute, Pre-image resistance, Second pre-image resistance, Collision resistance, Message Digest (MD), Secure Hash Algorithms (SHAs), Merkle trees, Patricia trees, Distributed hash tables (DHTs), Digital signatures, Elliptic Curve Digital signature algorithm (ECDSA).

Textbook 1:Chapter: sections Ch-2 (2.1-2.14)

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Bitcoin and Smart Contracts Overview

Bitcoin, Bitcoin definition, Transactions, The transaction life cycle, The transaction structure, Types of transaction, The structure of a block, The structure of a block header, The genesis block, The bitcoin network, Wallets, Smart Contracts-History, Definition, Ricardian contracts, Smart contract templates, Oracles, Smart Oracles, Deploying smart contracts on a blockchain, The DAO.

Textbook 1:Chapter: sections Ch-4(4.1-4.13)

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Ethereum Blockchain and Smart Contract Development

Ethereum 101, Introduction, Ethereum clients and releases, The Ethereum stack, Ethereum blockchain, Currency (ETH and ETC), Forks, Gas, The consensus mechanism, The world state, Transactions, Contract creation transaction, Message call transaction, Elements of the Ethereum blockchain, Ethereum virtual machine (EVM), Accounts, Block, Ether, Messages, Mining, The Ethereum network. Hands-on: Clients and wallets—Geth.

Textbook 1:Chapter: sections Ch-7(7.1-7.13)

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Нуре	erled	lger	and	Blo	ck ch	ain l	Frame	works	з: Нур	erled	ger, H	yperle	edger a	as a pr	otoco	l, Fabric,
Нуре	rledg	ger F	Fabri	ic, Sa	awtoc	th lak	ke, Cor	da								
Textb	ook	1:Cł	apt	er: s	sectio	ns Cl	1-9(9.1	-9.4)								
RBT	Lev	els:	L1,	L2 &	& L3											
			IV. COURSE OUTCOMES													
CO	l	Exp	Explain the Blockchain terminologies with its applications. design													
CO2	2	Illu	llustrate the working principles of Blockchain and the Smart Contract Lifecycle													
CO	3	De	Demonstrate the principles and methodologies used in Bitcoin													
CO ²	1	De	velo	p Et	hereu	m Ne	twork,	, Walle	ets, N	odes,	Smart	contra	act and	l DApp	S.	
COS	5	Ma	ake ı	ıse o	of Hyp	er-le	dger in	Blocl	kchair	Base	ed App	licatio	on Arc	hitectu	re.	
					V. C	O-PC	-PSO	MAPI	PING	(mar	k H=3;	; M=2	; L=1))		
PO/PS	SO	1	2	3	4	5	6	7	8	9	10	11	12	PS)!	PSO2
CO		2	2			2							1	1		
CO		2	2			2							1	1		
CO		2	2			2							1	1		
CO		2	2			2							1	1		
CO	5	2	2			2	A ccos	cmont	t Doto	ila (C	CIE &	SEE)	1	1		
<u> </u>		<u> </u>		<u> </u>	A 1				і Вета) em	TE &	SEE)				
							Regula									
Conti	nuo	us Ir	nteri	nal F	Evalu	ation	(CIE)	:Refe	r Ann	exure	Section	n 1				
Semes	ster	End	Exa	amin	ation	(SE	E):Ref	er An	nexur	e Sect	tion 1					
							VII.	Lea	rning	Reso	ources					
VII(a)): Te	extb	ooks	S:												
Sl. No.	,	Title	e of 1	the I	Book		Name	of the	auth	or	Edit	tion a	nd Ye	ar		me of the ıblisher
1.	Ma	ster	ing I	Blocl	k Cha	in	Im	ran Ba	shir		Third	Edition 202		ckt –		
VII(b): R	efer	ence	Boo	oks	•										
	1	Mast	erin	g Bit	tcoin:											
1.	Pro	_		_	ne Op	en	Aı	ndreas	M.			201	7		(O'rielly
VII(a)	\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			chai		o I o		(a D a	201110	00)•						
							ctures		Sourc	es):						
	•	•					104220									
• htt	tps://	/ww	w.ge	eksf	orgee	ks.or	g/blocl	cchain	/							
• ht	tps:/	//ww	w.tu	ıtoria	alspoi	nt.co	m/bloc	kchair	n/ inde	ex.htn	n.					
VIII:	Acti	ivity	Bas	sed I	Learn	ing /	Practi	cal Ba	ased I	∠earn	ing/Ex	perie	ntial l	earnin	g:	

69

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science & Engineering (Data Science)

Semester: \	/I C	Course Type:	PEC			
Course Title:	Distribu	ited File Syste	em			
Course Code:		23CDP623			Credits:	03
Teaching Hour		` ,		3:0:0:0	Total Hours:	40
CIE Marks:	50	SEE Mark	xs:	50	Total Marks:	100
SEE Type:		T	heory		Exam Hours:	03

I. Course Objectives:

- Understand the fundamentals and challenges of distributed file systems.
- Analyse different architectures, data placement, and fault tolerance strategies.
- Study consistency models, replication techniques, and failure recovery.
- Explore real-world DFS implementations and emerging future trends.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- l. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2.Use of Video/Animation to explain functioning of various concepts.
- 3.Encourage collaborative (Group Learning) Learning in the class.
- 4.Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design

III. COURSE CONTENT	
Module-1	08 Hrs

Introduction: Definition and characteristics of distributed systems, types of distributed systems (client-server, peer-to-peer, hybrid), key challenges (network latency, fault tolerance, consistency, scalability).

Textbook 1: Chapter: sections Ch-1 (1.1 - 1.3)

RBT	LOVA	lc•T 1	T 2	T 2
NDI	LCVC	12.17.1	. 44.	LU

Module-2

08 Hrs

DFS Architecture: Client-server vs. peer-to-peer, data placement, load balancing, fault tolerance, caching, and replication strategies. **File Access Models:** NFS, remote file access, performance optimizations.

Textbook 1 Chapter: sections Ch-2 (2.1, 2.2), Ch-10 (10.1 – 10.3)

RBT Levels: L1, L2, L3

Module-3: 08 Hrs

Consistency Models: Strong vs. eventual consistency, quorum-based consistency, CAP theorem. **Fault Tolerance & Recovery**: Techniques for fault tolerance (RAID, data replication), snapshots, checkpointing, failure recovery.

Textbook 1: Chapter: sections Ch-7 (7.1 - 7.4), Textbook 2: Chapter: sections Ch-8 (8.1 - 8.3)

RBT Levels: L1, L2, L3

Module-4: 08 Hrs

Google File System (GFS): Architecture, design principles, data retrieval, fault tolerance.

Hadoop Distributed File System (HDFS): Block storage, data replication, fault tolerance, scalability. **Other DFS Implementations:** Amazon S3 (object storage), Ceph (scalable DFS).

Textbook 2 Chapter: sections Ch-6 (6.1 – 6.3), Ch-7 (7.1 – 7.4)

RBT Levels: L1, L2, L3

Module-5: 08 Hrs

Future of DFS: Blockchain-based DFS, self-healing storage, quantum computing in DFS.

Textbook 2: Chapter: sections Ch-11 (11.1 – 11.3)

RBT Levels: L1, L2, L3

	IV. COURSE OUTCOMES
CO1	Understand the fundamental concepts, characteristics, and challenges of distributed systems.
CO2	Analyze different file system architectures, including client-server and peer-to-peer models, and their performance optimizations.
СОЗ	Evaluate data consistency models, fault tolerance mechanisms, and recovery techniques in distributed file systems.
CO4	Explore real-world distributed file system implementations such as Google File System (GFS), Hadoop Distributed File System (HDFS), and other scalable storage solutions.
CO5	Investigate advanced topics in distributed file systems, including blockchain-based storage, self-healing systems, and quantum computing applications.

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	PO/PSO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2													PSO2
CO1	2	2			2							1	1	
CO2	2	2			2							1	1	
CO3	2	2			2							1	1	
CO4	2	2			2							1	1	
CO5	2	2			2							1	1	

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE):Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Distributed Systems: Principles and Paradigms	Andrew S Tanenbaum & Maarten Van Steen	Fourth Edition, version 2 2025	Marteen van Steen
2	Designing Data- Intensive Applications	Martin Kleppmann	2017	O'Reillly Media
VII(b): Reference Books	•		•

1	Distributed Systems: An Algorithmic Approach	Sukumar Ghosh	2nd Edition, 2014	CRC Press (Taylor & Francis Group)
2	Distributed Systems: Concepts and Design	George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair	5th Edition, 2011	Pearson

VII(c): Web links and Video Lectures (e-Resources):

- $\bullet \quad https://www.geeksforgeeks.org/google-file-system-gfs-vs-hadoop-distributed-file-system-hdfs/,\\$
- https://medium.com/@maryamyameen168/google-file-system-apache-hadoop-case-study-d0f0b36682df.

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Mini Project: Build a simple client-server-based DFS where users can upload, retrieve, and delete files from multiple nodes.

SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi

Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:	PEC										
Course Title:	Course Title: Digital Marketing												
Course Cod	03												
Teaching Hotel		· ·		3:0:0:0	Total Hours:	40							
CIE Marks	CIE Marks: 50 SEE Marks:				Total Marks:	100							
SEE Type	e:	Т	heory		03								

I. Course Objectives:

- Understand Digital Marketing Fundamentals
- Analyze Consumer Behavior Online
- Develop and Implement Digital Campaigns
- Measure and Interpret Digital Analytics
- Apply Ethical and Legal Considerations

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. The teaching and learning process for a Digital Marketing course involves a blend of theoretical concepts, hands-on practice, and real-world case studies to ensure students gain both knowledge and practical skills.
- 2. The course begins with interactive lectures and discussions on fundamental topics such as SEO, SEM, social media marketing, content marketing, and analytics.
- 3. To enhance understanding, instructors use live demonstrations, multimedia presentations, and industry-relevant examples.
- 4. A practical, experiential approach is emphasized through lab sessions, workshops, and project-based learning, where students design and execute their own digital marketing campaigns. They use industry-standard tools like Google Ads, Facebook Business Manager, and Google Analytics to track performance and optimize strategies.
- 5. Case studies and guest lectures from marketing professionals provide insights into current trends, challenges, and best practices.
- 6. To reinforce learning, students engage in group discussions, peer reviews, and presentations that encourage critical thinking and collaborative learning. Regular assessments, including quizzes, assignments, live projects, and performance analytics reviews, help track progress and ensure conceptual clarity.

III. COURSE CONTENT

Module-1 08 Hrs

Introduction to the Course and Work plan: Introduction of the digital marketing, Digital vs. Real Marketing, Digital Marketing Channels, Creating initial digital marketing plan, Content management, SWOT analysis, Target group analysis, Web design, Optimization of Web sites, MS Expression Web.

Textbook 1:Chapter: sections Ch-2

RBT Levels: L1, L2 &L3

Module-2 08 Hrs

SEO Optimization: Writing the SEO content Google AdWords- creating accounts, Google AdWords- types Introduction to CRM, CRM platform, CRM models.

Textbook 2: Chapter: sections Ch-3

RBT Levels: L1, L2& L3

Module-3 08 Hrs

Introduction to Web analytics: Web analytics – levels, Introduction of Social Media Marketing Creating a Facebook page, Visual identity of a Facebook page, Types of publications Business opportunities and Instagram options, Optimization of Instagram profiles, Integrating Instagram with a Web Site and other social networks, keeping up with posts.

Textbook2: Chapter: sections Ch-3, Ch-4

RBT Levels:L1, L2, L3

Module-4 08 Hrs

Business tools on LinkedIn: Creating campaigns on LinkedIn, Analyzing visitation on LinkedIn Creating business accounts on YouTube, YouTube Advertising, YouTube Analytics Face book Ads, Creating Face book Ads, Ads Visibility.

Textbook 2:Chapter: sections Ch-6

RBT Levels:L1, L2 & L3

Module-5 08 Hrs

E-mail marketing: E-mail marketing plan, E-mail marketing campaign analysis, Keeping up with conversions Digital Marketing Budgeting- resource planning, cost estimating, cost budgeting, cost control.

Textbook 2:Chapter: sections Ch-7

RBT Levels:L1, L2& L3

IV. COURSE OUTCOMES

CO1	Explain Digital Marketing Concepts
CO2	Develop and Manage Digital Campaigns
CO3	Apply Web Analytics for Decision-Making
CO4	Optimize SEO and Content Marketing Strategies
CO5	Demonstrate Ethical and Legal Compliance

	V. CO-PO-PSOMAPPING(mark H=3; M=2; L=1)													
PO/PS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
О														
CO1	3	2										1	2	1
CO2			3		2				1				2	3
CO3				3	2						1		3	2
CO4			3			2	1						2	3
CO5						2		3		1			2	3

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE):Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Understanding Digital Marketing	Ryan, D	Third Edition, 2014	Kogan Page
2	Beginners Guide to Digital Marketing	Romuald Andrade	Second Edition,2017	Createspace Independent Pub
VII(b): Reference Books			

1	Epic Content Marketing	Pulizzi,J	Third Edition, 2014	Mc-graw Hill
				Education.

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://www.youtube.com/watch?v=kunkYTKFNtI
- 2. https://www.youtube.com/watch?v=BZLUEKnMfIY

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Seminar, assignments, case studies, group discussions

SJB Institute of Technology

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Semester:	VI	Course Type: O	EC									
Course Title: Introduction to Data Structures												
Course Code: 23CDO611 Credits: 03												
Teaching Hour			3:0:0:0	Total Hours:	40							
CIE Marks:	50	SEE Mark	s: 50	Total Marks:	100							
SEE Type:		Theo	ory	Exam Hours:	03							

I. Course Objectives:

- Introduce primitive and non-primitive data structures
- Understand the various types of data structure along their operations
- Study various searching and sorting algorithms
- Assess appropriate data structures during program development / problem solving

II. Teaching-Learning Process (General Instructions):

These are sample strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only the traditional lecture method, but different types of teaching methods may be adopted to achieve the outcomes.
- 2. Utilize video/animation films to illustrate the functioning of various concepts.
- 3. Promote collaborative learning (Group Learning) in the class.
- 4. Pose at least three HOT (Higher Order Thinking) questions in the class to stimulate critical thinking.
- 5. Incorporate Problem-Based Learning (PBL) to foster students' analytical skills and develop their ability to evaluate, generalize, and analyze information rather than merely recalling it.
- 6. Introduce topics through multiple representations.
- 7. Demonstrate various ways to solve the same problem and encourage students to devise their own creative solutions.
- 8. Discuss the real-world applications of every concept to enhance students' comprehension.
- 9. Use any of these methods: Chalk and board, Active Learning, Case Studies.

III. CO URSE CONTENT

Module-1: 08 Hrs

Arrays: Introduction, One-Dimensional Arrays, Two-Dimensional Arrays, Initializing Two Dimensional Arrays, Multidimensional arrays. Pointers: Introduction, Pointer Concepts, Accessing Variables through Pointers, Pointer Applications, Dynamic Memory Allocation Functions. Structures and Unions: Introduction, Declaring Structures, Giving Values to Members, Structure Initialization, Comparison of Structure Variables, Arrays of Structures, Arrays within Structures, Nested Structures, Unions, Size of Structures.

Textbook1: Chapter:s ections . 8.1 to 8.5, Ch. 12.1 to 12.8, 12.10, 12.11

Textbook 2:Chapter:sections: Ch. 2.1 to 2.3, 2.5, 2.9

RBT Levels: L1, L2 & L3

Module-2: 08 Hrs

Stacks: Introduction, Stack Operations, Stack Implementation using Arrays, Applications of Stacks.

Queues: Introduction, Queue Operations, Queue Implementation using Arrays, Different Types of

Queues: Circular Queues, Double-Ended Queues, Priority Queues, Applications of Queues.

Textbook 2:Chapter:sections: Ch. 6.1 to 6.3, Ch. 8.1 to 8.2.

RBT Levels: L1, L2 & L3

Module-3: 08 Hrs

Linked Lists: Introduction, Singly Linked List, Self-Referential Structures, Operations on Singly Linked Lists: Insert-Delete-Display, Implementation of Stacks and Queues using Linked List, Concatenate two Lists, Reverse a List without Creating a New Node, Static Allocation Vs Linked Allocation.

Circular Singly Linked List: Introduction, Operations: Insert-Delete-Display.

Textbook 2: Chapter:sections Ch. 9.1 to 9.2, 9.3 (Only 9.3.1 to 9.3.5, 9.3.11 to 9.3.12), 9.4 to 9.5.

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Trees: Introduction, Basic Concepts, Representation of Binary Trees, Operations on Binary Trees: Insertion-Traversals-Searching-Copying a Tree, Binary Search Trees, Operations on Binary Search Trees: Insertion-Searching-Find Maximum and Minimum Value-Count Nodes, Expression Trees. **Textbook 2:Chapter:sections**: Ch. 10.1 to 10.4, 10.5 (Only 10.5.1, 10.5.2, 10.5.3.1, 10.5.3.2, 10.5.3.4), 10.6.3

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Sorting: Introduction, Bubble Sort, Selection Sort, Insertion Sort. Searching: Introduction, Linear Search, Binary Search.

Textbook 1: Chapter:sections Ch. 17.1, 17.2.6, 17.3.2.

Textbook 2: Chapter:sections Ch. 11.1 to 11.3, 11.10.1.

RBT Levels: L1, L2 & L3

IV. COURSE OUTCOMES

CO1	Develop C programs utilizing fundamental concepts such as arrays, pointers and structures.
CO2	Apply data structures like stacks and queues to solve problems.
CO3	Develop C programs using linked lists and their various types.

CO4	Explain the fundamental concepts of trees and their practical applications.												
CO5	Demonstrate different sorting and searching algorithms and determine their algorithmic complexities.												
V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2												

						_		. – (-)	,	,		
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2	2	1	1	1							1		
CO2	2	2	2	2								1		
CO3	2	2	2	2								1		
CO4	2	2	2	2								1		
CO5	2	2	2	2								1		

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks: (Insert or delete rows as per requirement)

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
	"C Programming	"C Programming and	4th Edition, 2007.	McGraw-Hill,
1	and Data Structures",	Data Structures",		
	A M Padma Reddy,	"Systematic Approach	9th Revised Edition, 2009.	, Sri Nandi
2		to Data Structures		Publications,
		using C"		
VII(b): Reference Books:			
1	Ellis Horowitz and	"Fundamentals of Data	2nd Edition, 2014.	Universities Press,
1	Sartaj Sahni,	Structures in C"		
	"Data Structures	"Data Structures	Revised 1st Edition, 2014	McGraw-Hill,
2	Schaum's	Schaum's Outlines",		
	Outlines",			

VII(c): Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=DFpWCl_49i0
- https://www.youtube.com/watch?v=x7t_-ULoAZM
- https://www.youtube.com/watch?v=I37kGX-nZEI
- https://www.youtube.com/watch?v=XuCbpw6Bj1U
- https://www.youtube.com/watch?v=R9PTBwOzceo @#@10012025 4
- https://www.youtube.com/watch?v=qH6yxkw0u78
- https://archive.nptel.ac.in/courses/106/105/106105085/
- https://onlinecourses.swayam2.ac.in/cec19_cs04/preview

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

STI Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:	OEC										
Course Title: F	Course Title: Fundamental of Operating System												
Course Cod	le:	23CDO612		Credits:	3								
Teaching Hour {O – Other peda		•	3:0:0:0	Total Hours:	40								
CIE Marks:	50	SEE Marks:	50	CIE Marks:	50								
SEE Type:		Theor	у	Exam Hours:	03								

I. Course Objectives:

- To demonstrate the need and different types of OS
- To discuss suitable techniques for management of different resources
- To analyse different memory, storage, and file system management strategies.

II. Teaching-Learning Process (General Instructions):

These are sample strategies; which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) does not mean only the traditional lecture method, but different types of teaching methods may be adopted to achieve the outcomes.
- 2. Utilize video/animation films to illustrate the functioning of various concepts.
- 3. Promote collaborative learning(Group Learning) in the class.
- 4. Pose at least three HOT (Higher Order Thinking) questions in the class to stimulate critical thinking.
- 5. Incorporate Problem-Based Learning (PBL) to foster students' analytical skills and develop their ability to evaluate, generalize, and analyze information rather than merely recalling it
- 6. Introduce topics through multiple representations.
- 7. Demonstrate various ways to solve the same problem and encourage students to devise their own creative solutions.
- **8.** Discuss the real-world applications of every concept to enhance students' comprehension.
- **9.** Use any of these methods: Chalk and board, Active Learning, Case Studies.

Theory Module-1 Introduction: What operating systems do; Computer System organization; Computer SystemOrganization, ComputerSystemarchitecture; OperatingSystemoperations; Resource Management

Operating System Structures: Operating System Servies, User and Operating System interface; System calls, Application Program Interface, Types of system calls;

Textbook1:Chapter1:1.1,1.2,1.3,1.4,1.5Chapter2:2.1,2.2(2.2.1,2.2.2),2.3(2.3.2, 2.3.3)

RBT Levels: L1, L2, L3

Module-2 08hrs

ProcessManagement:Processconcept;Processscheduling;Operationsonprocesses; Interprocess Communication **Multi-threaded Programming:** Overview; Multithreading models,Thread Libraries

Textbook1:Chapter3:3.1-3.4,Chapter4:4.1,4.35,4.4

RBT Levels: L1, L2, L3

Module-3 08hrs

CPU Scheduling: Basic Concepts, Scheduling criteria, Scheduling algorithms, Thread Scheduling, **ProcessSynchronization:**Synchronization:Thecriticalsectionproblem;Peterson's solution; Semaphores; Classical problems of synchronization;

Textbook1:Chapter:section: Ch 5:5.1,5.2,5.3.1,5.3.2,5.3.3,5.3.4,5.4 Ch 6:6.1,6.2.,6.3,6.6

RBT Levels: L1, L2, L3

Module-4 08hrs

Deadlocks: Systemmodel; Deadlockcharacterization; Methodsforhandling deadlocks;

Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Memory Management: Background; Contiguous memory allocation; Paging; Structure of page table

Textbook1:Chapter8:8.1-8.8Textbook1:Chapter9:9.1-9.4(9.4.1,9.4.2)

RBT Levels: L1, L2, L3

Module-5 08hrs

Virtual Memory Management:Background;Demandpaging;Copy-on-write;Page replacement; **File System Interface:** File concept; Access methods; Directory Structure, Protection, File System Implementation: File System Structure, File System Operations, **File System Internals**: File Systems, File System Mounting; Partition and Mounting, File sharing;

Textbook1:Chapter10:10.1-10.3,10.4(10.4.1,10.4.2,10.4.4.)

Chapter 13:13.1,13.2, 13.3(13.3.1,13.3.2,13.3.3), 13.4(13.4.1,13.4.2) Chapter 15:15.1-15.4

RBT Levels: L1, L2, L3

	IV. COURSE OUTCOMES										
CO1	Explain the fundamentals of operating systems.										
CO2	Apply appropriate CPU scheduling algorithms for the given problem.										
CO3	Analyse the various techniques for process synchronization and deadlock handling.										
CO4	Apply the various techniques for memory management										
CO5	Analyse the importance of File System Mounting and File Sharing										

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3				2						2	1		
CO2	3	2	2	1	3						2	1		
CO3	3	2	2	1	3						2	1		
CO4	3	2	2		3						2	1		
CO5	3	2	2	1	2						2	1		

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Operating System	Abraham	10th edition, 2015	Wiley India
	Principles	Silberschatz, Peter		Publishers
		Baer Galvin, Greg		
		Gagne		

VII(b): Reference Books

1	Understanding	Ann McHoes Ida	6th Edition,2010	Canadaa Laarnina
1	Understanding	Aiii Michoes Ida	oth Edition,2010	Cengage Learning
	Operating System	M Fylnn		
2	Operating Systems:	D.M Dhamdher	3rd Edition, 2013	Ed, McGraw- Hill
	A Concept Based			
	Approach			
3	An Introduction to	P.C.P. Bhatt	4 th Edition, 2014	PHI(EEE)
	Operating Systems:			
	Concepts and			
	Practice			
4	Operating Systems:	William Stallings	6th Edition, 2008	Pearson
	Internals and Design			
	Principles			

VII(c): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/106/105/106105214/

https://archive.nptel.ac.in/courses/106/102/106102132/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Students are expected to prepare animated PPT to illustrate the different types of Process Scheduling and Paging.
- Students are required to prepare detailed case study report on Deadlocks **OR** Students can illustrate deadlock using any programming language

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type:		OEC						
Course Title: 1	ntroduc	ction to Data Scie	nce							
Course Co	de:	23CDO613		Credits: 3						
Teaching House {O – Other ped		` ,	3:0:0:0	Total Hours:	40					
CIE Marks:	50	SEE Marks	: 50	CIE Marks:	50					
SEE Type:		Theo	ry	03						

I. Course Objectives:

- Introduce Mathematical foundations required for Data Science
- Learn data analytics problem solving framework
- Illustrate the use of basic concepts of Data Science in the real-world applications.
- Discuss the functional components of Data Science for real world applications.

II. Teaching-Learning Process (General Instructions):

- 1. Chalk and Talk with Black Board
- ICT based Teaching
- 3. Demonstration based Teaching

III. COURSE CONTENT

Theory

Module-1 08 Hrs

Introduction: What is Data Science? Applications of Data Science, Data science life cycle, Tools for data science, DS and ML Fundamental Concepts: Classification and function approximations, Model forms, Generality of Data Science, Data Classification, viewing ML Algorithms.

Textbook 1: Chapter 1 & 2: Section 1.1-1.6, 2.1,2.2,2.4.2, 2.4.3,2.5,2.6

RBT Levels: L1 - Remembering, L2 - Understanding, L3 - Applying

Module-2 08 Hrs

Linear Algebra for DS: A framework for solving Data Science Problems, Linear Algebra for DS and ML: Matrix View of Linear Algebra, Fundamental Subspaces, Data Science and Fundamental Subspaces.

Textbook 1: Chapter 2& 3: Section 2.7, 3.2,3.3, 3.4, 3.5

RBT Levels: L1 - Remembering, L2 - Understanding, L3 - Applying

Module-3 08 Hrs

Optimization for DS and ML: Elements of an Optimization Formation, Discussion Objective Functions of Classification, First and Second-order Analytical Conditions for Optimality of Unconstrained NLPs, Numerical Approaches to Solving Optimization Problems.

Textbook 1: Chapter 4: Section 4.1 - 4.5

RBT Levels: L1 - Remembering, L2 - Understanding, L3 - Applying

Module-4 08 Hrs

Statistical Foundations for DS and ML: Decomposition of a Data Matrix into Model and Uncertainty Matrcies. Uncertainty Matrcies, Random variables and Probability Mass Functions, Deriving Model Probability Distribution Functions.

Textbook 1: Chapter 5: Section 5.1, -5.4

RBT Levels: L1 - Remembering, L2 - Understanding, L3 - Applying

Module-5 08 Hrs

Classification Methods: Types of Classification Problems, Parametric Methods, Non Parametric Methods. Future Directions

Textbook 1: Chapter 7 & 8: Section 7.1-7.3, 8.1

RBT Levels: L1 - Remembering, L2 - Understanding, L3 - Applying

IV. COURSE OUTCOMES Summarize the fundamental concepts for Data Science. Incorporate Mathematical Foundations for Modelling. Apply Numerical Approaches to Solving Optimization Problems.

CO4 Interpret the classification methods of Data Science.

V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	1		2							1		
CO2	3	3	2		1							1		
CO3	3	2	2		1							1		
CO4	3	3	2		2							1		

VI. Assessment Details (CIE & SEE)

General Rules: Refer CIE and SEE Guidelines.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks

CO1

CO3

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher	
1	Data Science for	Ragunathan, Rengaswamy	CRC Press 2023	CRC Press 2023	
	Engineers	Reshmi Suresh			

VII(c): Web links and Video Lectures (e-Resources):

- Introduction to Data Science | PPT (slideshare.net)
- https://www.slideserve.com/Priya72/introduction-to-data-science.

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

• Assignments, Quiz, Presentation.

SJB Institute of Technology

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Course Type	: OEC			
Course Title:		OOPs with J	ava			
Course Cod	le:	23CDO614			Credits:	03
Teaching Ho {O – Other pedage		ek (L:T:P:O) tion @}		3:0:0:0	Total Hours:	40
CIE Mark	s: 50	SEE M	larks:	50	Total Marks:	100
SEE Type	e:		Theory		Exam Hours:	03

I. Course Objectives:

This course will enable students to:

- •To acquire proficiency in fundamental constructs of the Java programming language.
- To Comprehend and apply the principles of Object-Oriented Programming (OOP) in Java.
- To acquire expertise in advanced Java concepts including packages, multithreaded programming, and exception handling.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Diverse Teaching Methods: Instead of relying solely on traditional lecture methods, can explore alternative and effective teaching approaches. These might include interactive discussions, hands-on activities, or multimedia presentations.
- 2. Visual Aids: Utilize videos and animations to elucidate complex concepts. Visual representations enhance understanding and engagement among students.
- 3. Collaborative Learning: Encourage group learning within the classroom. Collaborative activities foster teamwork, communication, and a deeper grasp of subject matter.
- 4. Higher Order Thinking (HOT) Questions: Pose at least three thought-provoking questions during class. These questions stimulate critical thinking and encourage students to analyze and evaluate information.
- 5. Problem-Based Learning (PBL): Implement PBL, which nurtures analytical skills. PBL goes beyond rote memorization by challenging students to design solutions, evaluate evidence, and think critically.
- 6. Multiple Representations: Introduce topics using various representations. Visuals, diagrams, and real-world examples cater to diverse learning styles.
- 7. Creative Problem Solving: Present different approaches to solving the same problem. Encourage students to think outside the box and devise their own innovative solutions.

8. Real-World Application: Discuss how each concept relates to practical scenarios. Connecting theoretical knowledge to real-world contexts enhances students' comprehension and retention. Chalk & Talk Stud. Assignment Web Resources LCD/Smart Boards Stud. Seminars

III. COURSE CONTENT

Module-1: 08 Hrs

Overview of Java: Object-Oriented Programming (Paradigms, Abstraction, Three OOP Principles), Code Blocks, Lexical Issues (Whitespace, Identifiers, Literals, Comments, Separators, Java Keywords). Data Types, Variables, Arrays: Primitive Types, Type Conversion and Casting, Automatic Type Promotion, Arrays, Type Inference with Local Variables. Operators: Arithmetic, Relational, Boolean Logical, Assignment, Operator Precedence, Parentheses Usage. Control Statements: Selection (if, switch), Iteration (while, do-while, for, For-Each Loop, Nested Loops), Jump Statements (break, continue, return).

Textbook: 1 Chapter: sectionsCh-2, Ch-3, Ch-4, Ch-5

RBT Levels: L1&L2

Module-2: 08 Hrs

Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object Reference Variables, Introducing Methods, Constructors, This Keyword, Garbage Collection. Methods and Classes: Overloading Methods, Objects as Parameters, Argument Passing, Returning Objects, Recursion, Access Control, understanding static, introducing final, Introducing Nested and Inner Classes.

Textbook: 1 Chapter: sectionsCh-6,Ch-7

RBT Levels: L1& L2

Module-3: 08 Hrs

Inheritance: Inheritance Basics, using super, creating a Multilevel Hierarchy, When Constructors Are Executed, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, Local Variable Type Inference and Inheritance, The Object Class. Interfaces: Interfaces, Default Interface Methods, Use static Methods in an Interface, Private Interface Methods.

Textbook: 1 Chapter: sectionsCh-8, Ch-9

RBT Levels: L1, L2 & L3

Module-4: 08 Hrs

Packages: Packages, Packages and Member Access, Importing Packages. Exceptions: ExceptionHandling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions.

Textbook: 1 Chapter: sections Ch-9, Ch-10

RBT Levels: L1, L2 & L3

Module-5: 08 Hrs

Multithreaded Programming: The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and Stopping Threads, Obtaining a Thread's 23 State. Enumerations, Type Wrappers and Autoboxing: Enumerations (Enumeration Fundamentals, The values () and valueOf() Methods), Type Wrappers (Character, Boolean, The Numeric Type Wrappers), Autoboxing (Autoboxing and Methods, Autoboxing/Unboxing Occurs in Expressions, Autoboxing / Unboxing Boolean and Character Values).

Textbook: 1 Chapter: sections Ch-11, Ch-12

RBT Levels: L1, L2 & L3

	IV. COURSE OUTCOMES											
CO1	Demonstrate proficiency in writing simple programs involving branching and looping											
	structures.											
CO2	Design a class involving data members and methods for the given scenario.											
CO3	Exert the concepts of inheritance and interfaces in solving real world problems.											
CO4	Apply the concept of packages and exception handling in solving complex problem											
CO5	Employ the concepts of multithreading, auto boxing and enumerations in program											
COS	development											

V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	1	1	3		2						2	2		
CO2	1	3									1	1		
CO3	2	1	2		1						1	1		
CO4	2	3	2	2	2						1	1		
CO5	1	2	3		2						2	1		

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE):Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
	Java: The	Herbert Schildt	12th Edition, November	McGraw-Hill,
1	Complete		2021	ISBN:
	Reference			9781260463422

VII(b): Reference Books

Ī	•	Programming	Balagurusamy	6th Edition Mar-2019	McGraw Hill
	1	with Java E			Education, ISBN:
	_				9789353162337.
L					
	2	Thinking in Java	Bruce Eckel	Fourth Edition, 2006	Prentice Hall

VII(c): Web links and Video Lectures (e-Resources):

- 1. Java Tutorial: https://www.geeksforgeeks.org/java/
- 2. Introduction To Programming In Java (by Evan Jones, Adam Marcus and Eugene Wu):

3. Java Tutorial: https://www.w3schools.com/java/ 24 4. Java Tutorial:

https://www.javatpoint.com/java-tutorial

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Assignments, Quizzes, and Seminar.

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Coı	Course Type: ETC							
Course Title:		UI/UX	with Flutte	er						
Course Code: 23CDE641						Credits:	3			
	Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}					Total Hours:	40			
CIE Marks: 50 SEE Marks:			rks:	50	Total Marks:	100				
SEE Type: Theory				eory		Exam Hours:	3			

I. Course Objectives:

This course will enable students to:

- Explain the installation process of Flutter SDK, Xcode, and Android Emulator.
- Describe Stateless and Stateful Widgets and illustrate the Widget Tree structure.
- Apply fundamental Dart programming concepts in Flutter development.
- Discuss the application of animations in a Flutter app.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

Module-1: 8 Hrs

Introducing Flutter and Getting Started: Introducing Flutter, Defining Widgets Widget Lifecycle Events, The Stateless Widget Lifecycle, The Stateful Understanding Widget Lifecycle, Understanding the Widget Tree and the Element Tree, Stateless Widget and Element Trees, Stateful Widget and Element Trees, Installing the Flutter SDK, Installing on mac OS, System Requirements, Get the Flutter SDK, Check for Dependencies, iOS Setup: Install Xcode, Android Setup: Install Android Studio, Set Up the Android Emulator, Installing on Windows, System Requirements, Get the Flutter SDK, Check for Dependencies, Install Android Studio, Set Up theAndroid Emulator, Installing on Linux, System Requirements, Get the Flutter SDK, Check for Dependencies, Install Android Studio, Set Up the Android Emulator, Configuring the Android Studio Editor.

Textbook 1: Chapter: sections: Ch:1

RBT Levels:L1,L2

Module-2: 8 Hrs

Creating a Hello World App: Setting Up the Project, Using Hot Reload, Using Themes to Style Your App, Usinga Global App Theme, Using a Theme for Part of an App, Understanding StatelessandStateful Widgets, Using External Packages.

Textbook 1: Chapter: sections: Ch:2

RBT Levels:L1,L2,L3

Module-3: 8 Hrs

Learning Dart Basics: Use of Dart, Commenting Code, Running the main() Entry Point, Referencing, Variables, Declaring Variables, Numbers, Strings, Booleans, Lists, Maps, Runes, Using Operators, Using Flow Statements, if and else, ternary operator, for Loops, while and dowhile, while and break, continue, switch and case, Using Functions, Import Packages, Using Classes, Class Inheritance, Class Mixins, Implementing Asynchronous Programming.

Textbook 1: Chapter: sections: Ch:3

RBT Levels:L1,L2, L3

Module-4: 8 Hrs

Creating a Starter Project Template: Creating and Organizing Folders and Files, Structuring Widgets. Understanding the Widget Tree: Introduction to Widgets, Building the Full Widget Tree, Building a Shallow WidgetTree.

Textbook 1: Chapter: sections: Ch:4,5

RBT Levels:L1,L2, L3

Module-5: 8 Hrs

Using Common Widgets: Using Basic Widgets, Safe Area, Container, Text, Rich Text, Column, Row, Column and Row Nesting, Buttons, Floating Action Button, Flat Button, RaisedButton, Icon Button, Popup Menu Button, Button Bar, Using Images and Icons, Asset Bundle, Image, Icon, Using Decorators, Using the Form Widget to ValidateText Fields, Checking Orientation.

Textbook 1:Chapter:sections:Ch:6

RBT Levels:L1,L2, L3

	IV. COURSE OUTCOMES										
CO1 Understand the basics of Flutter, widgets, and their lifecycle.											
CO2 Configure Flutter SDK and development environment on different operating systems.											
CO3	Create a simple Flutter application using widgets and themes.										
CO4	Explore Dart programming concepts like variables, functions, and object-oriented principles.										
CO5	Use common Flutter widgets to design user interfaces effectively.										

V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)

PO/P SO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	1	1	2							1	2	
CO2	3	2	2	2	3							1	2	1
CO3	2	2	2	2	3							1	2	1
CO4	2	2	2	2	3							1	2	1
CO5	2	3	3	3	3							1	2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
_	Beginning Flutter: A			
1	Hands-on Guide to App Development	Marco L. Napoli,	1st Edition,	Wrox publisher

VII(b): Reference Books:

1	Beginning App Development with Flutter: Create Cross-Platform Mobile Apps	Rap Payne	1st edition	Apress.
2	Practical Flutter: Improve your Mobile Development withGoogle's Latest Open-Source SDK	Frank Zammetti,	1st edition	Apress

VII(c): Web links and Video Lectures (e-Resources):

- 1. https://codewithandrea.com/?utm_source=chatgpt.com
- 2. https://www.geeksforgeeks.org/flutter-tutorial/?utm_source=chatgpt.com

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	V	V Course Type: ETC								
Course Title:	Parall	el Programmir	ng							
Course Code	3									
Teachin	ng Hou	rs/Week (L:T:	P:O)	3:0:0:0	Total Hours:	40				
CIE Marks: 50 SEE Marks:			50	50 Total Marks:						
SEE Type: THEORY				Y	Exam Hours:	3				

I. Course Objectives:

This course will enable students to:

- Explore the need for parallel programming
- Explain how to parallelize on MIMD systems
- To demonstrate how to apply MPI library and parallelize the suitable programs
- To demonstrate how to apply OpenMP pragma and directives to parallelize the suitable
- Programs to demonstrate how to design CUDA program

II. Teaching-Learning Process (General Instructions):

These are sample Strategies which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) needs not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different approaches and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding

III. COURSE CONTENT

Module-1: **08 Hrs**

Introduction to parallel programming, Parallel hardware and parallel software Classifications of parallel computers, SIMD systems, MIMD systems, Interconnection networks, Cache coherence, Shared-memory vs. distributed-memory, Coordinating the processes/threads, Shared-memory, Distributed-memory.

Text Book1: Chapter: Section Ch: 2-2.3, 2.4

RBT Levels:L1.L2

Module-2: 08 Hrs

GPU programming, Programming hybrid systems, MIMD systems, GPUs, Performance Speedup and efficiency in MIMD systems, Amdahl's law, Scalability in MIMD systems, Taking timings of MIMD programs, GPU performance.

Text Book1: Chapter: Section Ch :2-2.5, 2.6, 2.7, 2.8

RBT Levels:L1,L2

Module-3: 08 Hrs

Distributed memory programming with MPI – MPI functions, The trapezoidal rule in MPI, Dealing with I/O, Collective communication, MPI-derived datatypes, Performance evaluation of MPI programs, A parallel sorting algorithm.

Text Book1: Chapter: Section Ch: 3.

RBT Levels:L1,L2, L3

Module-4: 08 Hrs

Shared-memory programming with OpenMP – openmp pragmas and directives, The trapezoidal rule, Scope of variables, The reduction clause, loop carried dependency, scheduling, producers and consumers, Caches, cache coherence and false sharing in openmp, tasking, tasking, thread safety.

Text Book1: Chapter: Section Ch: 5-5.1, 5.2, 5.3, 5.4, 5.8, 5.9, 5.10

RBT Levels:L1,L2,L3

Module-5: 08 Hrs

Parallel Program Development - Two n-Body Solvers, Tree Search - Recursive depth-first search, Non recursive depth-first search, Data structures for the serial implementations, Performance of the serial implementations, Parallelizing tree search

Text Book1:Chapter:Section Ch: 6-6.1, 6.2 (6.2.1 to 6.2.5)

RBT Levels:L1,L2,L3

IV. COURSE OUTCOMES

After goi	ng through this course, the student will be able to
CO1	Explain the need for parallel programming
CO2	Demonstrate parallelism in MIMD system.
CO3	Apply MPI library to parallelize the code to solve the given problem.
CO4	Apply OpenMP pragma and directives to parallelize the code to solve the given problem
CO5	Design a CUDA program for the given problem.

	V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)													
PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
SO														
CO1	1	2	3		3								2	1
CO2	2	3	2		2								2	1
CO3	3	2	3		2								2	1
CO4	3	3	2		2								2	1
CO5	3	2	3		2								2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Publication	Edition
1	An Introduction to Parallel Programming	Peter S Pacheco, Matthew Malensek	Morgan Kauffman	2 nd Edition
2	Parallel Programming in C with MPI and OpenMp,	Michael J Quinn –	McGrawHill.	1 st Edition
X7TT/1	. \ D -f Dl	_		

VII(b): Reference Books:

,	•			
2	Principles of Parallel Programming,	Calvin Lin, Lawrence Snyder	Pearson	1 st Edition,
3	Using OpenMP: Portable Shared Memory Parallel Programming, Scientific and Engineering Computation	Barbara Chapman	The MIT Press	2 nd Edition
4	Ewing Lusk – Using MPI:Portable Parallel Programing	William Gropp	Scientific and Engineering Computation.	3 rd Edition

VII(c): Web links and Video Lectures (e-Resources):

WebLinks:

Introduction to parallel programming: https://nptel.ac.in/courses/106102163

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI	Cou	rse Type:	ETC			
Course Title: Prompt Engineering							
Course Code: 23CDE643						Credits:	3
Teaching Hours/Week (L:T:P:O) {O – Other pedagogies, mention @}					3:0:0:@	Total Hours:	40
CIE Marks			rks:	50	Total Marks:	100	
SEE Type	:	·	Т	heory		Exam Hours:	03

I. Course Objectives:

This course will enable students to:

- Learn the fundamentals of prompt engineering and effective prompt design.
- Understand how large language models generate text and images.
- Explore AI tools for content creation and automation.
- Develop hands-on skills in crafting prompts for AI-generated outputs.
- Analyze the capabilities, limitations, and ethical aspects of generative AI.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

Module-1: 8 Hrs

Introduction to LLM and Prompting: Introduction to Large Language Models What are Text Generation Models, Large Language Models are Magic, A Brief History of Language Models, LLMs in the Market Understanding Prompting and Prompt Techniques Five Principles of Prompting, Introducing LLM Prompts, How LLM Prompts Work, Types of Prompts, Components of an Prompt, Defining Personality in Prompts, Mix and Match Strategic Combination for Enhanced Prompts, Challenges and Limitations of Using Prompts.

Textbook1: Chapter: sections: Ch:1,2

RBT Levels:L1,L2

Module-2: 8 Hrs

Standard Practices for Text Generation: Generating Lists, Explain It Like I'm Five, Universal Translation Through LLMs, Ask For Context, Text Style Unbundling, Identifying the Desired Textual Features, Generating New Content with the Extracted Features, Role Prompting, Analyzing Existing Prompts for Strengths and Weaknesses

Textbook1:Chapter:sections: Ch:3

RBT Levels:L1,L2,L3

Module-3: 8 Hrs

Generating Text with AI for Content Creation: Using AI for Copywriting, Creating Social Media Posts. Writing Video Scripts, Using AI for Personalized Messaging, Creating Engaging and Tailored Content with AI, Techniques for Crafting Effective Prompts for Surveys, Assessments, and Data Collection, Using Prompts in Research Methodology.

Textbook1: Chapter: sections Ch: 4,5

RBT Levels:L1,L2, L3

Module-4: 8 Hrs

Introduction to Diffusion Models for Image Generation: Introduction to Image Generation with AI, Principles of Designing Prompts for Image Generation, Available Models - OpenAI DALL-E, Midjourney, Stable Diffusion, Google Gemini, Text to Video, Model Comparison, Reverse Engineering Prompts, Negative Prompts, Prompt Re-Writing, Prompt Analysis.

Textbook1: Chapter: sections: Ch:7

RBT Levels:L1,L2, L3

Module-5: 8 Hrs

Building AI Powered Applications: AI Blog Writing, Topic Research, Expert Interview, Generate Outline, Text Generation, Writing Style, Title Optimization, AI Blog Images, User Interface, Ethical Considerations of Using AI for Text and Image Generation.

Textbook1: Chapter: sections: Ch:8

RBT Levels:L1.L2, L3

MD I L	evels:11;121, 13					
	IV. COURSE OUTCOMES					
CO1	Design clear, concise, and effective prompts using standard prompt engineering principles.					
CO2	Utilize LLMs to generate high-quality text and images for content creation					
CO3	Analyze and refine existing prompts to enhance AI-generated outputs.					
CO4	Apply prompt engineering techniques across various AI applications					
CO5	Evaluate the ethical considerations and limitations of AI-generated content.					

	V. CO-PO-PSO MAPPING(mark H=3; M=2; L=1)													
PO/P SO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	2	2	1							1	2	1
CO2	3	2	2	2	1							1	2	1
CO3	3	2	2	2	1							1	2	1
CO4	2	2	2	2	1							1	2	1
CO5	2	3	3	3	1							1	2	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Prompt			
	Engineering for			
	Generative AI:	James Phoenix and	First Edition,2024	O'Reilly Media
	Future-Proof	Mike Taylor	That Edition, 2024	O Keniy Media
	Inputs for Large			
	Language Models			

VII(b): Reference Books:

1	Prompt Engineering in Practice	Richard Davies	May 2024	Manning Publications
2	Prompt Engineering for LLMs: The Art and Science of Building Large Language Model- Based Applications	SinanOzdemir and Eric Nichols	First Edition,2024	O'Reilly Media
3.	The Art of Prompt Engineering with Chatgpt: A Hands-On Guide	Nathan Hunter	2023	

VII(c): Web links and Video Lectures (e-Resources):

- https://www.tutorialspoint.com/prompt_engineering/index.html
- https://www.promptingguide.ai/

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Department of Computer Science and Engineering (Data Science)

Semester:	VI Co	ourse Type: E	ГС			
Course Title:	Course Title: Data Security And Privacy					
Course Code	: 2	3CDE644		Credits:	3	
Teaching Hour {O – Other peda			3:0:0:@	Total Hours:	40	
CIE Marks: 50 SEE Marks:			s: 50	Total Marks:	100	
SEE Type:		Theo	ory	Exam Hours:	3	

I. Course Objectives:

This course will enable students to:

- Explain standard algorithms used to provide confidentiality, integrity and authenticity fordata.
- Distinguish key distribution and management schemes.
- Deploy encryption techniques to secure data in transit across data networks.
- Implement security applications in the field of Information technology.
- Illustrate data privacy.

II. Teaching-Learning Process (General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

III. COURSE CONTENT

Module-1: Classical Encryption Techniques

8 Hrs

Classical Encryption Techniques: Symmetric Cipher Model, Cryptography, Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Poly alphabetic Cipher, One Time Pad. Block Ciphers and thedata encryption standard: Traditional block Cipher structure, stream Ciphers and block Ciphers, Motivation for the feistel Cipher structure, the feistel Cipher, The data encryption standard, DES encryption, DES decryption, A DES example, results, the avalanche effect, the strength of DES, the use of 56-Bit Keys, the nature of the DES algorithm, timing attacks, Block cipher design principles, number of rounds, design of function F, key schedule algorithm.

Text Book1:Chapter:sections:Ch: 3,4

RBT Levels:L1,L2

Module-2: Public-Key Cryptography and RSA:

8 Hrs

Public-Key Cryptography and RSA: Principles of public-key cryptosystems. Public- key cryptosystems. Applications for public-key cryptosystems, requirements for publickey cryptosystems. Public-key cryptanalysis. The RSA algorithm, description of the algorithm, computational aspects, the security of RSA. **Other Public-Key Cryptosystems:** Diffiehellman key exchange, The algorithm, key exchange protocols, man in the middle attack, Elgamal Cryptographic systems, Elliptic curve arithmetic, abelian groups, elliptic curves over real numbers, elliptic curves over Zp, Elliptic curve encryption/ decryption, security of Elliptic curve cryptography, Pseudorandom number generation based on a asymmetric cipher

Text book 1: Chapter: sections: Ch: 9,10

RBT Levels:L1,L2,L3

Module-3:Key Management and Distribution:

8 Hrs

Key Management and Distribution: Symmetric key distribution using Symmetric encryption, A key distribution scenario, Hierarchical key control, session key lifetime, a transparent key control scheme, Decentralized key control, controlling key usage, Symmetric key distribution using asymmetric encryption, simple secret key distribution, secret key distribution with confidentiality and authentication, A hybrid scheme, distribution of public keys, public announcement of public keys, publicly available directory, public key authority, public keys certificates, X-509 certificates. Certificates, X-509 version 3, Public Key infrastructure.

Text Book 1: Chapter: sections: Ch:14

RBT Levels:L1,L2, L3

Module-4: An Introduction to privacy preserving data mining:

8 Hrs

An Introduction to privacy preserving data mining: Privacy-Preserving Data Mining Algorithms, The Randomization Method, Group Based Anonymization.

Text Book 2: Chapter: sections: Ch:1 -1.1, 1.2, 2 - 2.2, 2.3.

RBT Levels: L1,L2, L3

Module-5:Distributed Privacy

8 Hrs

Distributed Privacy-Preserving Data Mining, Privacy-Preservation of Application Results, Limitations of Privacy: The Curse of Dimensionality, Applications of Privacy Preserving Data Mining

Text Book 2: Chapter: sections: Ch: 2 - 2.4, 2.5, 2.6, 2.7

RBT Levels:L1,L2, L3

	IV. COURSE OUTCOMES													
CO1		-	e the y solut		rabilit	ies in	any o	compu	iting s	system	and	hence	be able to	design a
CO2	Ic	lentify	y the s	ecurit	y issue	es in tl	he net	work a	and re	solve	it			
CO3	E	valua	te secu	ırity n	nechar	nisms	using	rigoro	us ap	proach	es, in	cludin	g theoretica	l.
CO4	D	escrit	e imp	ortano	e of d	lata pr	ivacy,	limita	ations	and ap	plicat	ions		
	•			V. C	O-PO	-PSO	MAP	PING	(mark	κ H=3;	M=2	; L=1)		
PO/P	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
SO														
CO1	3	3	1	1								1	2	1
CO2	3	3	2	2								1	1	1
CO3	2	2	2	1								1	1	1
CO4	2	2	1	1								1	1	1

VI. Assessment Details (CIE & SEE)

General Rules: Refer Academic Regulations.

Continuous Internal Evaluation (CIE): Refer Annexure Section 1

Semester End Examination (SEE): Refer Annexure Section 1

VII. Learning Resources

VII(a): Textbooks:

Sl. No.	Title of the Book	Name of the author	Edition and Year	Name of the publisher
1	Cryptography and Network Security,	William Stallings.,	7th edition.	Pearson
2	Privacy Preserving Data Mining: Models and Algorithms,	Charu C. Aggarwal, Philip S Yu, Kluwer	2008, ISBN 978-0-387- 70991-8, DOI 10.1007/978- 0-387- 70992-5	Academic Publishers

VII(b): Reference Books:

1	Cryptography and Network Security	AtulKahate	4th Edition	McGraw Hill Education
2	Cryptography and Information Security	V K Pachghare	2nd edition	РНІ

VII(c): Web links and Video Lectures (e-Resources):

- 3. https://www.coursera.org/courses?query=data%20security%20and%20privacy
- 4. https://www.youtube.com/watch?v=wjW72QO8pYc

VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Presentation / Group Discussion/ Assignments.

| Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology | BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi
Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015
Recognized by UGC, New Delhi with 2(f) & 12 (B)

Semester:	VI	VI Course Type: AEC					
Course Title:	Course Title: Research Methodology & IPR						
Course Code	:	23RMAE6	1	Cred	its:	03	
Teaching l	Hours/	Week (L:T:P	(O:	3:0:0:@	Total Hours:	40	
CIE Marks:	ks: 50 SEE Marks:			50	Total Marks:	100	
SEE Type:		·	Theory		Exam Hours:	03	

I. Course Objectives:

- To Understand the knowledge on basics of research and its types.
- To Learn the concept of Literature Review, Technical Reading, Attributions and Citations.
- To learn Ethics in Engineering Research.
- To Discuss the concepts of Intellectual Property Rights in engineering.

II. Teaching-Learning Process:

- Chalk and talk method
- Power point presentation/keynotes
- Videos

III. COURSE CONTENT

III(a). Theory PART

Module-1:Introduction	U8Hrs

Introduction: Meaning of Research, Objectives of Engineering Research, and Motivation in Engineering Research, Types of Engineering Research, Finding and Solving a Worthwhile Problem.

Ethics in Engineering Research, Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship.

Textbook 1 : Chapter1 : sections: 1.1,1.2,1.3,1.4 Textbook 1 : Chapter5 : sections: 5.1,5.2,5.3

Self Learning: Case Studies

RBT Levels: L2

Module-2:Literature Review and Technical Reading

08Hrs

Literature Review and Technical Reading, New and Existing Knowledge, Analysis and Synthesis of Prior Art Bibliographic Databases, Web of Science, Google and Google Scholar, Effective Search: The Way Forward Introduction to Technical Reading Conceptualizing Research, Critical and Creative Reading, Taking Notes While Reading, Reading Mathematics and Algorithms, Reading a Datasheet.

Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments.

Textbook1: Chapter2: sections: 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10

Textbook1: Chapter3: sections: 3.1,3.2,3.3,3.4

Self Learning: Case Studies

RBT Levels: L2

Module-3: Introduction To Intellectual Property

08Hrs

Introduction To Intellectual Property: Role of IP in the Economic and Cultural Development of the Society, IP Governance, IP as a Global Indicator of Innovation, Origin of IP History of IP in India. Major Amendments in IP Laws and Acts in India.

Patents: Conditions for Obtaining a Patent Protection, To Patent or Not to Patent an Invention. Rights Associated with Patents. Enforcement of Patent Rights. Inventions Eligible for Patenting. Non-Patentable Matters. Patent Infringements. Avoid Public Disclosure of an Invention before Patenting.

Process of Patenting. Prior Art Search. Choice of Application to be Filed. Patent Application Forms. Jurisdiction of Filing Patent Application. Publication. Pre-grant Opposition. Examination. Grant of a Patent. Validity of Patent Protection. Post-grant Opposition.

Textbook2: Chapter1: sections:1.1,1.2,1.3,1.4,1.6 Textbook2: Chapter2: sections:2.1 (2.1.1 to 2.1.9)

Self Learning: Case Studies

RBT Levels: L2

Module-4: Copyrights and Related Rights

08 Hrs

Copyrights and Related Rights: Classes of Copyrights. Criteria for Copyright. Ownership of Copyright. Copyrights of the Author. Copyright Infringements. Copyright Infringement is a Criminal Offence. Copyright Infringement is a Cognizable Offence. Fair Use Doctrine. Copyrights and Internet. Non-Copyright Work. Copyright Registration. Judicial Powers of the Registrar of Copyrights. Fee Structure. Copyright Symbol. Validity of Copyright. Copyright Profile of India. Copyright and the word 'Publish'. Transfer of Copyrights to a Publisher. Copyrights and the Word 'Adaptation'. Copyrights and the Word 'Indian Work'. Joint Authorship. Copyright Society. Copyright Board. Copyright Enforcement Advisory Council (CEAC). International Copyright Agreements, Conventions and Treaties. Interesting Copyrights Cases.

Trademarks: Eligibility Criteria. Who Can Apply for a Trademark. Acts and Laws. Designation of Trademark Symbols. Classification of Trademarks. Registration of a Trademark is Not Compulsory. Validity of Trademark. Types of Trademark Registered in India. Trademark Registry. Process for Trademarks Registration. Prior Art Search. Famous Case Law: Coca-Cola Company vs. Bisleri International Pvt. Ltd.

Textbook2:Chapter2: sections: 2.2 (except 2.2.6)

Textbook2: Chapter2: sections:2.3 (2.3.1 to 2.3.10, 2.3.14)

Learning: Case Studies

RBT Levels: L2

Module-5: Industrial Designs

08Hrs

Industrial Designs: Eligibility Criteria. Acts and Laws to Govern Industrial Designs. Design Rights. Enforcement of Design Rights. Non-Protectable Industrial Designs India. Protection Term. Procedure for Registration of Industrial Designs. Prior Art Search. Application for Registration. Duration of the Registration of a Design. Importance of Design Registration. Cancellation of the Registered Design. Application Forms. Classification of Industrial Designs. Designs Registration Trend in India. International Treaties. Famous Case Law: Apple Inc. vs. Samsung Electronics Co.

Geographical Indications: Acts, Laws and Rules Pertaining to GI. Ownership of GI. Rights Granted to the Holders. Registered GI in India. Identification of Registered GI. Classes of GI. Non-Registerable GI. Protection of GI. Collective or Certification Marks. Enforcement of GI Rights. Procedure for GI Registration Documents Required for GI Registration. GI Ecosystem in India.

Textbook2: Chapter2: Sections : 2.4, 2.5 (2.5.1 – 2.5.13)

Self Learning: Case Studies

RBT Levels:L2

IV. COURSE OUTCOMES

CO1	Understand the importance of engineering research and its ethics.
CO2	Interpret the fundaments of Literature Review and Technical Reading.
CO3	Outline the fundamentals of patens laws and drafting procedure.
CO4	Illustrate the copyright laws and basic principles of design rights.

V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12	S1	S2	S3	S4
CO1	2							2		1		2				
CO2	2							3		3		2				
CO3				2				3	2	2		3				
CO4								3	2	2		3				

VI. Assessment Details (CIE & SEE)

General Rules: Refer to – Academic regulations

Continuous Internal Evaluation (CIE):

Refer to Annexure, SL #5

Rubrics: Refer to Annexure, SL #5

Semester End Examination (SEE):

Refer to - Annexure, SL #5

Rubrics: Refer to - Annexure, SL #5

Engineering Research RajeebDey, ValentinaE.Balas (electronic) ISSN 1868-4498 (Electronic) ISSN 1868-4408 (electronic) Pall-13-2947-0 (eBook), Publication Bureau, Panjab University Chandigarh-160014, India VII(b): Reference Books: I Research Methods for Engineers Intellectual Property Rights N.K.Acharya ISBN: 978-93- Asia Law House 6th Property Rights N.K.Acharya ISBN: 978-93- Asia Law House 6th Edition VII(c): Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html			VII. Lear	rning Resources		
No. Title of the Book Name of the author Edition and Year publisher Research RajeebDey, ISSN 1868-4394 ISSN 1868-4408 ISSN 1868-4408 ISSN 1868-4408 2946-3 ISBN 978-981-13-2947-0 (eBook),	VII(a	i): Textbooks:				
Engineering Research RajeebDey, ValentinaE.Balas (electronic) ISSN 1868- 4394 ISSN 1868-4408 (electronic) Palphi-13-2947-0 (eBook), Publication Bureau, Panjab University Chandigarh-160014, India VII(b): Reference Books: I Research Methods for Engineers Intellectual Property Rights David V. Thiel Property Rights N.K.Acharya ISBN: 978-93- Asia Law House 6th Edition VII(c): Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html		Title of the Book	Name of the author	Edition and Year		
Property A Primer for Ms. Mamta Bhardwaj VII(b): Reference Books: Research Methods for Engineers David V. Thiel Property Rights Panjab University Chandigarh-160014, India	1	Research	RajeebDey,	ISSN 1868-4408	Reference Library, ISBN 978-981-13- 2946-3 ISBN 978- 981-13-2947-0	
1 Research Methods for Engineers 2 Intellectual Property Rights N.K.Acharya NI(c): Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L04.html	2	Property A Primer for	Tewari Ms. Mamta	2021	Chandigarh-160014,	
Methods for Engineers 2 Intellectual Property Rights N.K.Acharya Wil(c): Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html	VII(b): Reference Books	:			
2 Intellectual Property Rights N.K.Acharya ISBN: 978-93- Asia Law House 6th 81849-30-9 VII(c): Web links and Video Lectures (e-Resources): https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html	1	Methods for	David V. Thiel	978-1-107-03488-4		
https://www.youtube.com/watch?v=5fvpsqPWZac http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html	2		N.K.Acharya		Asia Law House 6th Edition	
http://kcl.digimat.in/nptel/courses/video/109106137/L68.html http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html	VII(c	e): Web links and Vi	ideo Lectures (e-Resou	irces):		
http://kcl.digimat.in/nptel/courses/video/109106137/L72.html http://acl.digimat.in/nptel/courses/video/109106137/L04.html	-	•				
http://acl.digimat.in/nptel/courses/video/109106137/L04.html	-	•				
	-	•				
VIII: Activity Based Learning / Practical Based Learning/Experiential learning:						

Quizzes, Assignments, Seminars

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Semester: VI		Course Type: I	urse Type: HSMC							
Course Title: Social Connect Responsibility										
Course Code	23	SCRH08	Credits:	Credits:						
Teaching Ho	urs/We	ek (L: T: P: O)	1:0:0:0	Total Hours:	15					
CIE Marks: 50			•	Total Marks:	50					

I. Course Objectives:

- This course aims to familiarize students with the dynamics of society and importance of conscious participation in the formation of an ideal society
- The course enables students to critically analyze the social processes of globalization, modernization and social change, and its impact on the socio-cultural system.
- The course aims to develop socially responsible engineers by engaging them in real-world social issues, analyzing their impact, proposing innovative solutions, and effectively documenting their findings.
- The course enables students to create a responsible connection with the society.

II. Teaching-Learning Process (General Instructions):

This course is designed to provide students with hands-on learning experiences that foster social awareness, critical thinking, and problem-solving skills. Teachers play a crucial role in guiding students through real-world issues and encouraging innovative, ethical solutions.

- 1. Foster an Experiential Learning Approach
 - Encourage field visits, case studies, and real-world problem analysis rather than relying solely
 on theoretical lectures.
 - Use problem-based learning (PBL) where students actively engage with a community issue and work towards solving it.
- 2. Facilitate Active Student Engagement
- Conduct brainstorming sessions to help students identify and understand societal problems.
- Promote group discussions and debates on contemporary social issues.
- 3. Encourage Innovative & Feasible Solutions
- Help students explore technology-driven solutions using engineering principles.
- Promote a multi-disciplinary approach, integrating environmental, social, and economic aspects.

- 4. Promote Community Interaction & Implementation
- Guide students to collaborate with NGOs, local communities, or government agencies.
- Ensure that students test their solutions in real-world settings and collect feedback.
- Emphasize the importance of ethical considerations in community engagement.
- 5. Train Students in Documentation & Reporting
- Teach students how to prepare structured reports on their findings, solutions, and implementation outcomes.
 - Encourage presentations, digital storytelling, and video documentation for effective communication.
 - Provide constructive feedback on student projects and ensure continuous improvement.

III. COURSE CONTENT

Module-1:Introduction to Social Connect Responsibility

03Hrs

- 1. Identify the factors comprising the socio-cultural system and its impact on society
- 2. The concept of inter-relatedness of society and culture, socio-cultural dimensions, factors contributing to socio-cultural revolution.
- 3. Identifying problems in areas such as education, healthcare, environment, and infrastructure.

Module-2: Understanding Social Issues

03 Hrs

- 1. Understanding societal challenges in local and global contexts.
- 2. Role of engineers in addressing these issues.
- 3. Conducting preliminary field surveys and interviews

Module-3: Analyzing the Social Problem

03 Hrs

- 1. Understanding the economic, environmental, and societal impact of the problem
- 2. Ethical and moral considerations in problem-solving by Interaction with stakeholders (community members, NGOs, government bodies)
- 3. Root cause analysis using tools like SWOT, Fishbone Diagram, and Case Studies.

Module-4: Proposing Engineering Solutions

03 Hrs

- 1. Application of engineering knowledge to develop feasible solutions.
- 2. Use of technology for social good (IoT, AI, Renewable Energy, Smart Systems, etc.).
- 3. Sustainable and cost-effective approaches.
- 4. Feasibility analysis and implementation strategies.

Module-5: Documentation & Reporting

03 Hrs

- 1. Preparing a structured report with problem identification, analysis, proposed solutions, and implementation insights.
- 2. Creating presentations, videos, and other forms of project documentation.
- 3. Reflecting on personal learning and the social impact of the project.

4. Submission of a final report and group presentation.

	IV.COURSE OUTCOMES									
CO1	Students will be able to recognize and define real-world social issues, assessing their relevance and impact on communities.									
CO2	Students will develop analytical skills to investigate the root causes of social problems and evaluate their economic, environmental, and ethical implications.									
CO3	Students will apply engineering principles and innovative thinking to propose feasible, sustainable, and technology-driven solutions for identified social issues.									
CO4	Students gain from stakeholder's interaction and develop presentation skills.									

V.CO-PO-PSO MAPPING

PO/PSO	1	2	3	4	5	6	7	8	9	10	11	12
CO1			1			2	1	1	1			1
CO2			1			1	2	1	1			1
CO3			1			2	2	1	1			1
CO4			1			2	1	1	1			1

VI. Formative Assessment Details (CIE)

Continuous Internal Evaluation (CIE)& Rubrics: Refer to Annexure section -8

VII. Learning Resources

VII (a). Reference Books:

- 1. C. N. Shankar Rao (2006) Sociology of Indian Society, 2nd, S. Chand publication
- 2. Nandan Nilekani, Imagining India: The Idea of a Renewed Nation, Penguin Books, 2009.
- 3. Gurcharan Das, India Unbound: From Independence to the Global Information Age, Anchor Books, 2002.
- 4. Raghuram G. Rajan, I Do What I Do, Harper Business, 2017.

VIII. Activity Based Learning

- 1. **Community Survey:** Students visit local communities (rural/urban) to identify real social issues (sanitation, education, healthcare, infrastructure)
- 2. Collaboration with NGOs & CSR Units: Partner with organizations working on social impact projects.
- 3. **Sustainability Planning:** Students draft plans for scaling up their solutions in a sustainable manner
- 4. **Video Documentation:** Create short films showcasing their social project progress and community feedback.