

Dai Sri Gurudev | Sri Adichunchana giri Shikshana Trust (R)

SJB Institute of Technology

Department of Artificial Intelligence and Machine Learning

Course Outcomes and CO-PO-PSO Articulation Matrix

BATCH 2022-2026

SEMESTER-III

	Subj	ect: M	athem	atics f	or Cor	nputer	Scien	ce			S	ubject	Code	BCS3	01	
						(Course	Outco	mes							
CO1	Explai	n the ba	sic con	cepts o	f probal	oility, ra	andom	variable	s, prob	ability d	listribut	ion.				
CO2	Apply	suitable	probal	oility di	stributi	on mod	els for	the give	n scena	rio.						
CO3	Apply	the noti	on of a	discret	e-time l	Markov	chain a	and n-st	ep trans	sition pr	obabili	ties to s	olve th	e given	proble	m.
CO4	Use sta	e statistical methodology and tools in the engineering problem-solving process.														
CO5	Comp	empute the confidence intervals for the mean of the population.														
CO6	Apply	ompute the confidence intervals for the mean of the population. oply the ANOVA test related to engineering problems.														
	-					C	O-PO-P	SO Maj	pping							
- CO						P	Os							PS	Os	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2										2	1	1	1
CO2			3	2									1	1	1	1
CO3		2	3		2								1	1	1	1
CO4	2		3										1	2	1	1
CO5	2		3			2					2		1	1	2	1

	Subjec	t: Dig	ital De	sign &	Comp	uter Oı	rganiza	tion			S	ubject	Code:	BCS3	02	
						(Course	Outco	mes							
CO1	Apply 1	the K-N	Map tec	hniques	s to sim	plify va	arious E	Boolean	express	sions						
CO2	Design	differe	nt types	s of con	nbinatio	onal and	d seque	ntial cir	cuits al	ong witl	n Verilo	og prog	rams.			
CO3	Descri	be the	fundan	nentals	of ma	chine i	nstruct	ions, a	ddressi	ng mod	les and	proce	ssor pe	erforma	ance.	
CO4	Explair	lain the approaches involved in achieving communication between processor and I/O devices.														
CO5	Analyz	llyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance.														
						CO	-PO-P	SO Ma	pping							
COs						P	Os							PS	Os	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2		1										2		1	
CO2	2	3												2	2	
CO3	2			1	2									2		
CO4	1		2											2		2
CO5	2			2	1								1			2

		Su	bject:	Opera	ating S	ystems	}				Sı	ıbject	Code:	BCS3	03	
						C	ourse	Outco	mes							
CO1	Explain	n the sti	ructure	and fun	ctionali	ity of op	perating	g systen	1.							
CO2	Apply	appropi	riate CF	U sche	duling a	algorith	ms for	the give	en probl	lem.						
CO3	Analyz	e the va	arious t	echniqu	es for p	rocess	synchro	onizatio	n and d	leadlock	handlir	ıg.				
CO4	Apply	the vari	ious tec	hniques	for me	mory n	nanagei	nent.								
CO5	Explain	n file ar	nd secon	ndary st	orage n	nanagei	nent sti	rategies	•							
	•					CO	-PO-P	SO Ma	pping							
COs						P	Os							PS	Os	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2											1			
CO2	2	2											1			
CO3		1	2										1			
CO4		2											1			
CO5	2			1						1		·	1			

	Subj	ject: I	Data S	tructu	res and	d Appl	lication	18			S	ubject	Code:	BCS3	04	
						C	Course	Outco	mes							
CO1	Explair	n differe	ent data	structu	ires and	their a	pplicati	ons.								
CO2	Apply .	Arrays,	Stacks	and Qu	ieue dat	a struct	tures to	solve t	he giver	proble	ms.					
CO3	Use the	conce	pt of lir	ked list	t in prob	olem so	lving.									
CO4	Develop solutions using trees and graphs to model the real-world problem.															
CO5	Trees.															
						CO	-PO-P	SO Ma	apping							
COs						P	Os							PS	Os	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2		3									2	2	1	1	1
CO2	2		3	2								2	2	1	1	1
CO3	3		2									2	2	1	1	1
CO4	3		2									2	2	1	1	1
CO5	3		2									2	1	1	1	1

	S	ubject	t: Data	Struc	tures l	Labora	atory				St	ıbject	Code:	BCSL.	305	
						(Course	Outco	mes							
CO1	Explair	n differ	ent data	structu	ires and	l their a	pplicati	ons.								
CO2	Apply .	Arrays,	Stacks	and Qu	ieue da	ta struc	tures to	solve t	he giver	1 proble	ms.					
CO3	Use the	conce	pt of lir	nked lis	t in prol	blem so										
	•					CO	-PO-P	SO Ma	apping							
COs						P	Os							PS	Os	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	1			1							2			
CO2	2	2	1	1		1							2			
CO3	2	2	1	1		1							2			
CO4	2	2	1	1		1							2			
CO5												2	1			

	Subjec	t: Pytl	hon Pr	ogran	nming	for Da	ta Scie	ence			Sı	ubject	Code	BDS30	6B	
						(Course	Outco	mes							
CO1	Describ	e the c	onstruc	ts of Py	thon p	ogramı	ning									
CO2	Use loc	pping a	nd cond	litional	constru	cts to b	uild pro	grams.								
CO3	Apply	the con	cept of	data str	ucture 1	to solve	the rea	ıl-world	proble	m.						
CO4	Use the	NumP	y const	ructs fo	or matri											
CO5	Apply	the Pan	da cons	tructs f	or data											
	L					CO	-PO-P	SO Ma	pping							
COs						P	Os							PS	Os	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2										2	1	1	1
CO2			3	2									1	1	1	1
CO3		2	3		2								1	1	1	1
CO4	2		3										1	2	1	1
CO5	2		3			2					2		1	1	2	1

		Subj	ect: Da	ata An	alytics	with E	Excel				S	ubjec	t Code	BCS3	58A	
								Outc								
CO ₁	Use a	dvance	d functi	ons and	produc	ctivity to	ools to	assist in	develo	ping wo	rksheet	S.				
CO2	Mani	pulate d	ata lists	using (Outline	and Piv	otTabl	es.		<u> </u>						
CO3	Use C	Consolidation to summaries and report results from multiple worksheets.														
CO4	Apply	oply Macros and Auto filter to solve the given real-world scenario.														
						CO	-PO-P	SO M	apping	20				9		
COs							Os							PS	SOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	1		1	1				1				1	1	-	-
CO2	1	1		1	1				1		_		1	1		
CO3	1	1		1	1				1				1	1		
CO4	1	1	_	1	1				1				1	1		
CO5	1	1		1	1				1				1	1		
		•		1	1				1				1	1		

HOD 20/12/2015

Head of the Department
Department of Artificial Intelligence and Machine Learning
SJB INSTITUTE OF TECHNOLOGY
BGS Health & Education City,
No. 67, Uttarahalli Road, Kengeri
Bengaluru - 560 060

||Jai Sri Gurudev|| Sri Adichunchanagiri Shikshana Trust (R)

(An Autonomous Institute under Visvesvaraya Technological University, Belagavi)
Approved by AICTE, New Delhi, Recognized by UGC, New Delhi with 2 (f) & 12 (B)
Accredited by NAAC with 'A+' Grade.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & MACHINE LEARNING

Course Outcomes and CO-PO-PSO Articulation Matrix Batch 2022-26 Semester-IV

	Sub	ject: A	nalysi	s & D	esign	of Alg			Subj	ect Cod	le: BC	S401			
						C	ourse	Outcom	es						
CO1	time	comple	exity.					alyze th				gardin .			of
CO2	comp	utation	nal pro	blems	s.			and de							
CO3	the g	iven re	al wor	ld or	compl	ex con	nputati	amic pro	oblems	•				1953	
CO4		y greed						nods to			string	based c	omput	ational	
CO5	Anal	yse var	ious c	lasses	(P,NI	P and 1	NP Co	mplete)	of prob	olems					
CO6	Illust	rate ba	cktrac	king,	branc			d appro		on met	nods.				
						CO-	The second of the second	SO Maj	pping					200	
							POs							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	2						1			2	1		
CO2	1	2	2				117		1	31176	Q Stra	2	1		
CO3	1	2	2	2					1			2	1		
CO4	1	2	2	2					1			2	1		
CO5	1	2	2	2					1			2	1		
		2	2	2					1			2	1		

		Subje	ct: Ar	tificia	l Intel	ligenc			Subje	ct Cod	e: BAI)402			
		THE						Outco							
CO1		y know cations		of ag	ent arc	chitect	ure, se	earchir	ng and r	easoning	g techni	ques fo	r diffe	rent	
CO ₂									hnique						
CO3	Deve	lop kn	owled	ge bas	e sent	ences	using	propo	sitional	logic an	d first o	order lo	gic.		
CO4	Desc	Describe the concepts of quantifying uncertainty Use the concepts of Expert Systems to build applications													
CO5						stems	to bu	ild app	lication						
						CO.	PO-P	SO M	apping					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				A TOWN				THE		1	2		
CO2		2			2								2		
CO3	2												1		
CO4	2	2				2					and the same of the same of		2		
CO5			3	1									1		

	Su	bject:	Databa	ase Ma	anage	ment S	System	S			Subj	ject Co	de: BC	S403	
						(Course	Outcom	ies	Gild I					
CO1	Desc	ribe th	e basi	c elem	nents o	of a re	lationa	l databa	se man	agemer	it syste	m			
CO ₂	Desi	gn enti	ty rela	tionsh	ip for	the gi	ven sc	enario.							
CO3	Appl	y vario	ous Str	ucture	d Que	ery Lai	nguage	(SQL)	statem	ents for	databa	se man	ipulati	on.	
CO4	Anal	yse vai	rious n	ormal	izatio	n form	is for t	he giver	applic	ation.					
CO5	Deve	lop da	tabase	applic	cation	s for tl	he give	n real v	vorld pr	roblem.					
CO6	Unde	elop database applications for the given real world problem. rstand the concepts related to NoSQL databases													
						CO-	PO-P	SO Maj	pping						
							POs							PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			3								3		
CO2	3	3			3								3		
CO3	3	3	2		3							3	3		
CO4	3	3	3		3								3		
CO5	3	3											3		
CO6	3		3		3						A language	3	3		

	Subjec	et: Ana	lysis d	& Des	ign of	fAlgo	rithms			Subj	ect Cod	e: BCS	SL404		
						C	Course	Outcom	es						
CO1	Deve	lop pro	grams	s to so	lve co	mputa	itional	problen	ns using	g suitab	le algo	rithm d	esign s	trategy	
CO2		pare alg					s by de	evelopir	ig equi	valent p	rogran	ns and c	bservi	ng runr	ning
CO3	Make	use of	suital	ole int	tegrate	ed dev	elopme	ent tools	to dev	elop pro	ograms				
CO4		se app	-	_	orithn	n desig	gn tech	niques	to deve	elop sol	ution t	o the co	omputa	tional	and
CO5		onstrated the re		_		devel	opmen	t of pro	gram,	its exec	cution a	and run	ning ti	me(s) a	and
						CO	DO D	O Mar	nina						
						CO-	PO-PS	SO Maj	pping					PSOs	
	1	2	3	4	5	6		SO Maj	oping 9	10	11	12	1	PSOs 2	3
CO1	1 2	2 2	3	4			POs			10	11	12 2	1 2		3
CO1 CO2	1 2 2 2						POs				11			2	3
		2	3	1			POs			1	11	2	2	2	3
CO2	2	2 2	3	1 1			POs			1 1	11	2 2	2 2	2 2 2	3

	Subject: Discrete Mathematical Structures	Subject Code: BCS405A
	Course Outcomes	monatt a compensation of the little of
CO1	Apply concepts of logical reasoning and mathematical p statements.	roof techniques in proving theorems and
CO2	Demonstrate the application of discrete structures in diff	erent fields of computer science.
CO3	Apply the basic concepts of relations, functions and part representations.	ially ordered sets for computer

CO4	Solve problems involving recurrence relations and generating functions.														
CO5	Illustrate the fundamental principles of Algebraic structures with the problems related to computer science & engineering.														
						CO-	-PO-P	SO M	apping						
	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2									-	1			
CO ₂	3	2										1		305	
CO3	3	2										1			
CO4	3	2										1			
CO5	3	2		-							HER	1			

			Su		Subject Code: BDSL456D										
	La Village							Outco							
CO1	Apply concepts of data types, selection, and looping constructs of the Julia programming language.														
CO2	Demonstrate the use of strings, functions, arrays, and matrix operations in problem-solving.														
CO3	Develop programs involving data structures to handle multi-valued data items.														
CO4	Apply packages to generate plots of mathematical functions and equations.														
						CO-	PO-P	SO M	apping						
	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3										1		2
CO2	3	2		3									1	1	
CO3	3	2											1		1
CO4	1	2	1		2	2	3	1					1		2

	Sub	ject: B	iology	For	Comp	uter E	ngineer	'S			Subject Code: BBOC407							
The last								Outcom										
CO1	Elucidate the basic biological concepts via relevant industrial applications and case studies																	
CO ₂	Evaluate the principles of design and development, for exploring novel bioengineering projects																	
CO3	Corroborate the concepts of biomimetics for specific requirements																	
CO4	Think critically towards exploring innovative biobased solutions for socially relevant problems																	
						CO-	PO-PS	SO Maj	ping									
							POs						PSOs					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1	2					1	2	1				1						
CO2	2					1	2	1				1						
CO3	2					1	2	1				1						
CO4	2					1	2	1				1						

	Subject: Universal Human Values (UHV)	Subject Code: BUHK408
	Course Outcomes	
CO1	They would become more responsible in life, and in h solutions, while keeping human relationships and human relationships are human relationships are human relationships and human relationships are	nandling problems with sustainable nan nature in mind.

CO ₂	They would have better critical ability.														
CO3	They would also become sensitive to their commitment towards what they have understood (human values human relationship and human society).														
CO4						e, at le	ast a b	y what t eginning SO Ma	g would					differe	nt
						CO-	POs	50 Maj	phing					PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								3		3					
CO2		3								3				FIS	
CO3								3						15/35	
CO4								3		3				- (100	

Dept. of Al & ML