














Approved by AICTE, 2(f) and 12(B) recognized by UGC, New Delhi Accredited by NAAC, Accredited by NBA, Certified by ISO 9001 - 2015









## SERVICE TO MANKIND IS SERVICE TO GOD

His Divine Soul Padmabhushana Sri Sri Sri Dr. Balagangadharanath MahaSwamiji

Founder President, Sri Adichunchanagiri Shikshana Trust®



Belief in God is not ignorance or illusion. It is a belief that there is an unseen, ineffable Power that transcends all our



His Holiness Parama Pujya

Sri Sri Sri Dr. Nirmalanandanatha MahaSwamiji

President, Sri Adichunchanagiri Shikshana Trust ®

True richness is the generosity of heart. Cultivate it and work to help the less fortunate ones in life.

Revered Sri Sri Dr. Prakashanatha Swamiji

Managing Director, BGS & SJB Group of Institutions & Hospitals

People and prosperity follow the path which the leaders take. So, the elders and leaders should make sure that they give the right lead and take.

## **Syllabus Book for M.Tech (CAD Structure)**

## Syllabus for 1st to 4th Semester

The syllabus, scheme and guidelines are provided in detail.

The syllabus, scheme and guidelines are subjected to changes if any needed.

The updates will be done and intimated timely.

The Syllabus book is available on <a href="www.sjbit.edu.in">www.sjbit.edu.in</a>

For any queries, please write to <a href="academicdean@sjbit.edu.in">academicdean@sjbit.edu.in</a>

## **UPDATES**

| Release /<br>Revision | Date       | Remarks                               |
|-----------------------|------------|---------------------------------------|
| Release               | 06/02/2024 | First uploading, Version 1            |
| Version 2             | 15/03/2024 | Correction of Teaching hours per week |
| Version 3             | 05/04/2024 | CIE & SEE guidelines modified         |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |
|                       |            |                                       |



# SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

## **AUTONOMOUS SCHEME - MTech CAD Structures First Year CCS**

SCHEME: 2023 Aca. Year.: 2023-24

|          | SCHEME. 2025   |                    |                |                                                                            |                |                 |         |         |          |           |                       |              |      |          |            |            |
|----------|----------------|--------------------|----------------|----------------------------------------------------------------------------|----------------|-----------------|---------|---------|----------|-----------|-----------------------|--------------|------|----------|------------|------------|
|          |                | ies                |                |                                                                            | <b>.</b>       | <b>.</b>        |         |         | Tea      | ching     | Hrs/Week              | Examinations |      |          | ns         |            |
|          |                | ser                |                |                                                                            | Dep            | del             | S       | L       | T        | P         | S                     | <b>9</b> 3   |      | SEE      |            | 83         |
| SL<br>No | Course<br>Type | Course type series | Course<br>Code | Course Title                                                               | Teaching Dept. | QP setting dept | Credits | Lecture | Tutorial | Practical | PBL/ABL/<br>SL/othrs. | CIE Marks    | Dur. | Th. Mrks | Lab. Mrks. | Tot. Marks |
|          | SEM:           | I                  |                |                                                                            |                |                 |         |         |          |           |                       |              |      |          |            |            |
| 1        | BSC            | 1                  | 23CCST11       | Numerical Methods and programming                                          | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | ı          | 100        |
| 2        | IPCC           | 2                  | 23CCSI12       | Finite Element Analysis of Structural Systems -<br>Concepts and Procedures | CV             | CV              | 4       | 3       | 0        | 2         |                       | 50           | 3    | 50       | ı          | 100        |
| 3        | PCC            | 3                  | 23CCST13       | Computational Structural mechanics - Classical and FE approach             | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | -          | 100        |
| 4        | PCC            | 4                  | 23CCST14       | Continuum mechanics - Classical and FE approach                            | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | ı          | 100        |
| 5        | PCC            | 5                  | 23CCST15       | Structural Dynamics- Theory and Computations                               | CV             | CV              | 3       | 3       | 0        | 0         | 2                     | 50           | 3    | 50       | ı          | 100        |
| 6        | PCC            | 6                  | 23CCST16       | Research Methodology and IPR                                               | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | ı          | 100        |
| 7        | PCCL           | 7                  | 23CCSL17       | CAD Lab – FE Programming                                                   | CV             | CV              | 2       | 1       | 0        | 2         |                       | 50           | 3    | -        | 50         | 100        |
|          |                |                    |                |                                                                            | SEM            | I Total         | 21      | 19      | 0        | 4         | 2                     | 350          |      | 300      | 50         | 700        |
|          | SEM:           | II                 |                |                                                                            |                |                 |         |         |          |           |                       |              |      |          |            |            |
| 1        | IPCC           | 1                  | 23CCSI21       | Analysis of Plates and shells – Classical and FE<br>Approach               | CV             | CV              | 4       | 3       | 0        | 2         |                       | 50           | 3    | 50       | -          | 100        |
| 2        | PCC            | 2                  | 23CCST22       | Structural stability analysis - Classical and FE approach                  | CV             | CV              | 3       | 3       | 0        | 0         | 2                     | 50           | 3    | 50       | -          | 100        |
| 3        | PEC            | 3                  | 23CCSP21y      | Professional elective- 1                                                   | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | 1          | 100        |
| 4        | PEC            | 4                  | 23CCSP22y      | Professional elective- 2                                                   | CV             | CV              | 3       | 3       | 0        | 0         |                       | 50           | 3    | 50       | ı          | 100        |
| 5        | PRJ            | 5                  | 23CCSP25       | Mini Project with seminar                                                  | CV             | CV              | 4       | 0       | 0        | 0         | @PBL                  | 50           | 3    | 50       | -          | 100        |
| 6        | PCCL           | 6                  | 23CCSL26       | CAD Lab – FE Modelling and Analysis                                        | CV             | CV              | 2       | 1       | 0        | 2         |                       | 50           | -    | -        | 50         | 100        |
|          |                |                    |                |                                                                            | SEM-           | II Total        | 19      | 13      | 0        | 4         | 2                     | 300          |      | 250      | 50         | 600        |
|          |                | TOTAL              | 40             |                                                                            |                |                 |         |         |          |           |                       |              |      |          |            |            |
|          |                |                    |                |                                                                            | •              |                 |         |         |          |           |                       |              |      |          |            |            |

BSC: Basic science course, PCC: Professional core. IPCC-Integrated Professional Core Courses, PCCL-Professional Core Course lab, PEC: Professional elective course, PRJ: Project, INT: Internship(G), SLC: Self learning course, L-Lecture, P-Practical, T/SDA-Tutorial / Skill Development Activities (Hours are for Interaction between faculty and students)

PEC-1 PEC-2

| Course<br>Code | Course Title                              | Course Code | Course Title                       |
|----------------|-------------------------------------------|-------------|------------------------------------|
| 23CCSP211      | Advanced Design of Steel Structures       | 23CCSP221   | Structural Optimization            |
| 23CCSP212      | Design of Bridges                         | 23CCSP222   | Mechanics of Composites            |
| 23CCSP213      | Advanced Design of RC Structural Elements | 23CCSP223   | Structural Health Monitoring       |
| 23CCSP214      | Design of Offshore Structures             | 23CCSP224   | Reliability Analysis of Structures |



SLC

23CCSS2y

Self learning course- 2





Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

## **AUTONOMOUS SCHEME - MTech CAD Structures Second Year CCS**

SCHEME: 2023 Aca. Year.: 2024-25

|                  |        | eries      | t t       |                              | .: 12          |            |         |         | Tea                                         | aching    | Hrs/Week              |          | Exa  | minatio  | ons        |            |
|------------------|--------|------------|-----------|------------------------------|----------------|------------|---------|---------|---------------------------------------------|-----------|-----------------------|----------|------|----------|------------|------------|
| SL               | Course | e<br>S     | Course    |                              | Dept.          | g dept     | its     | L       | Т                                           | P         | S                     | rks      |      | SEE      |            | S. S.      |
| No               | Type   | Course typ | Code      | Course Title                 | Teaching Dept. | QP setting | Credits | Lecture | Tutorial                                    | Practical | PBL/ABL/<br>SL/othrs. | CIE Marl | Dur. | Th. Mrks | Lab. Mrks. | Tot. Marks |
| SEM: III         |        |            |           |                              |                |            |         |         |                                             |           |                       |          |      |          |            |            |
| 1                | PCC    | 1          | 23CCST31  | Advanced structural analysis | CV             | CV         | 4       | 3       | 2                                           | 0         |                       | 50       | 3    | 50       | -          | 100        |
| 2                | PEC    | 2          | 23CCSP33X | Professional elective- 3     | CV             | CV         | 3       | 3       | 0                                           | 2         |                       | 50       | 3    | 50       | -          | 100        |
| 3                | PEC    | 3          | 23CCSP34X | Professional elective- 4     | CV             | CV         | 3       | 3       | 0                                           | 0         |                       | 50       | 3    | 50       | -          | 100        |
| 4                | PRJ    | 4          | 23CCSPR34 | Project Work phase -1        | CV             | CV         | 3       | 0       | 0                                           | 0         | @PBL                  | 50       | 3    | 50       | -          | 100        |
| 5                | PRJ    | 5          | 23CCSPR35 | Societal Project             | CV             | CV         | 3       | 0       | 0                                           | 0         | 6                     | 50       | 3    | 50       | -          | 100        |
| 6                | INT    | 6          | 23CCSG36  | Internship                   |                |            | 6       | ((      | (06 weeks between of II and III semesters.) |           |                       |          | 3    | -        | 50         | 100        |
| SEM-I Total 22 9 |        |            |           |                              |                |            |         |         | 2                                           | 2         | 6                     | 300      |      | 250      | 50         | 600        |

PEC-3 PEC-4

|   | Course Code |   | Course Code    | Course Title                                       | Course         | Code                  | Course Title                        |                           |         |        |              |         |     |   |     |     |
|---|-------------|---|----------------|----------------------------------------------------|----------------|-----------------------|-------------------------------------|---------------------------|---------|--------|--------------|---------|-----|---|-----|-----|
|   |             |   | 23CCSP331      | Design Concepts of Substructures                   | 23CCS          | P341                  | Admixtu                             | res and                   | Special | Conci  | retes        |         |     |   |     |     |
|   |             |   | 23CCSP332      | Advanced Design of Prestressed Concrete Structures | 23CCS          | P342                  | Earthquake Geotechnical Engineering |                           |         |        |              |         |     |   |     |     |
|   |             |   | 23CCSP333      | 23CCSP333 Design of Industrial Structures          |                | P343                  | Fracture                            | Fracture Mechanics        |         |        |              |         |     |   |     |     |
|   |             |   | 23CCSP334      | Design of Precast and Composite Structures         | 23CCS          | P344                  | Action ar                           | nd Resp                   | onse of | Struct | ural Systems |         |     |   |     |     |
|   | SEM: I      | v | Course<br>Code | Course Title                                       | Teaching Dept. | QP<br>setting<br>dept | Credits                             | Credits Teaching Hrs/Week |         |        | Exa          | minatio | ons |   |     |     |
| 1 | PRJ         | 2 | 23CCSPR41      | Project work phase 2                               |                |                       | 18                                  | -                         | -       | -      | @PBL         | 100     | 03  | - | 100 | 200 |
| 2 | SLC         | 1 | 23CCSS1y       | Self learning course- 1                            | NPTEL NPTEL    |                       | PP/NP                               | 0                         | 0       | 0      | _            |         |     |   |     |     |

BSC: Basic science course, PCC: Professional core. IPCC-Integrated Professional Core Courses, PCCL-Professional Core Course lab, PEC: Professional elective course, PRJ:Project, INT:Internship(G), SLC: Self learning course, L-Lecture, P-Practical, T/SDA-Tutorial / Skill Development Activities (Hours are for Interaction between faculty and students)

**NPTEL** 

SECOND YEAR TOTAL

**NPTEL** 

**SEM-II Total** 

PP/NP

18

40

0

0

100

100 200

0



## | Jai Sri Gurudev | | Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

| Table content |             |                                                           |       |  |  |  |  |  |  |
|---------------|-------------|-----------------------------------------------------------|-------|--|--|--|--|--|--|
| Sl.No.        | Subject     | Subject                                                   | Pg No |  |  |  |  |  |  |
|               | Code        |                                                           |       |  |  |  |  |  |  |
| 1             | 23CCST11    | Numerical Methods and Programming                         | 1-3   |  |  |  |  |  |  |
| 2             | 23CCSI12    | Finite Element Analysis of Structural Systems -           | 4-6   |  |  |  |  |  |  |
|               |             | Concepts and Procedures                                   |       |  |  |  |  |  |  |
| 3             | 23CCSI13    | Computational Structural Mechanics - Classical and FE     | 7-9   |  |  |  |  |  |  |
|               |             | approach                                                  |       |  |  |  |  |  |  |
| 4             | 23CCSI14    | Continuum mechanics – Classical and FE approach           | 10-12 |  |  |  |  |  |  |
| 5             | 23CCSI15    | Structural Dynamics- Theory And Computations              | 13-15 |  |  |  |  |  |  |
| 6             | 23CCST16    | Research Methodology and IPR                              | 16-18 |  |  |  |  |  |  |
| 7             | 23CCSL17    | CAD Lab – FE Programming                                  | 19-20 |  |  |  |  |  |  |
| 8             | 23CCSI21    | Analysis of Plates and shells – Classical and FE Approach | 21-23 |  |  |  |  |  |  |
| 9             | 23CCST22    | Structural stability analysis - Classical and FE approach | 24-26 |  |  |  |  |  |  |
| 10            | 23CCSP211   | Advanced Design of Steel Structures                       | 27-29 |  |  |  |  |  |  |
| 11            | 23CCSP212   | ~                                                         |       |  |  |  |  |  |  |
| 12            | 23CCSP213   | Advanced Design of RC Structural Elements                 | 33-35 |  |  |  |  |  |  |
| 13            | 23CCSP214   | Design of Offshore Structures                             | 36-38 |  |  |  |  |  |  |
| 14            | 23CCSP221   | Structural Optimization                                   | 39-40 |  |  |  |  |  |  |
| 15            | 23CCSP222   | Mechanics of Composites                                   | 41-43 |  |  |  |  |  |  |
| 16            | 23CCSP223   | Structural Health Monitoring                              | 44-46 |  |  |  |  |  |  |
| 17            | 23CCSP224   | Reliability Analysis of Structures                        | 47-49 |  |  |  |  |  |  |
| 18            | 23CCSL26    | CAD Lab – FE Modelling and Analysis                       | 50-51 |  |  |  |  |  |  |
| 19            | 23CCST31    | Advanced structural analysis                              | 52-53 |  |  |  |  |  |  |
| 20            | 23CCSP331   | Design Concepts of Substructures                          | 54-55 |  |  |  |  |  |  |
| 21            | 23CCSP332   | Advanced Design of Prestressed Concrete Structures        | 56-57 |  |  |  |  |  |  |
| 22            | 23CCSP333   | Design of Industrial Structures                           | 58-59 |  |  |  |  |  |  |
| 23            | 23CCSP334   | Design of Precast and Composite Structures                | 60-61 |  |  |  |  |  |  |
| 24            | 23CCSP341   | Admixtures and Special Concretes                          | 62-64 |  |  |  |  |  |  |
| 25            | 23CCSP342   | Earthquake Geotechnical Engineering                       | 65-66 |  |  |  |  |  |  |
| 26            | 23CCSP343   | Fracture Mechanics                                        | 67-68 |  |  |  |  |  |  |
| 27            | 23CCSP344   | Action and Response of Structural Systems                 | 69-71 |  |  |  |  |  |  |
| 28            | CIE & SEE E | Evaluation strategy for Autonomous Scheme MTech 2023      | 72    |  |  |  |  |  |  |
| 29            | CIE and SEE | guidelines based on course Type for M.Tech Autonomous     | 73-76 |  |  |  |  |  |  |
|               | Scheme 2023 |                                                           |       |  |  |  |  |  |  |



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                             | 1                                            | Co  | urse Type: | BSC   |               |    |  |  |  |  |  |  |
|-------------------------------------------------------|----------------------------------------------|-----|------------|-------|---------------|----|--|--|--|--|--|--|
| Course Title: N                                       | IUME                                         | RIC | AL METHO   | ODS A | AND PROGRAMMI | NG |  |  |  |  |  |  |
| Course Code: 23CCST11 Credits: 03                     |                                              |     |            |       |               |    |  |  |  |  |  |  |
| Teaching Hours/Week (L:T:P:O) 3:0:0:0 Total Hours: 40 |                                              |     |            |       |               |    |  |  |  |  |  |  |
| CIE Marks:                                            | CIE Marks: 50 SEE Marks: 50 Total Marks: 100 |     |            |       |               |    |  |  |  |  |  |  |
| SEE Type: Theory Exam Hours: 3 Hours                  |                                              |     |            |       |               |    |  |  |  |  |  |  |
| I Common Olivertina                                   |                                              |     |            |       |               |    |  |  |  |  |  |  |

#### **I. Course Objectives:**

- To understand techniques of numerical computation
- To effectively use MATLAB programming for numerical computation

#### **II. Teaching-Learning Process:**

The course will be covered in five modules. Various aspects of MATLAB programming for numerical computation will be covered in these modules, with each module dedicated to on equivalent numerical topic along with dedicated lab sessions. There will be self-study problems at the end of several of these lectures. Assignments will also be posted periodically.

#### III. COURSE CONTENT

#### III Theory PART

**Module-1:** Introduction to MATLAB Programming

8 Hours

#### **Introduction to MATLAB Programming:**

Basics of MATLAB programming, Array operations in MATLAB, Loops and execution control, Working with files: Scripts and Functions, Plotting and program output.

#### **Approximations and Errors:**

Defining errors and precision in numerical methods, Truncation and round-off errors, Error propagation, Global and local truncation errors. (Taylor's / Maclaurin series expansion of some functions are used to introduce approximations and errors in computational methods)

**RBT Levels: L1 L2** 

#### **Module-2: Numerical Differentiation and Integration**

8 Hours

Numerical Differentiation: Numerical Differentiation in single variable, Numerical differentiation: Higher derivatives, Differentiation in multiple variables.

Numerical Integration: Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, MATLAB functions for integration.

**RBT Levels: L2 L3** 

#### **Module-3: Linear Equations**

8 Hours

Linear Equations: Linear algebra in MATLAB, Gauss Elimination, LU decomposition and partial pivoting, Iterative methods: Gauss Siedel, Special Matrices: Tri-diagonal matrix algorithm Nonlinear Equations: Nonlinear equations in single variable, MATLAB function fzero in single variable, Fixed-point iteration in single variable, Newton-Raphson in single variable, MATLAB function fsolve in single and multiple variables, Newton-Raphson in multiple variables

#### **RBT Levels: L2 L3**

## **Module-4: Ordinary Differential Equations**

8 Hours

methods, Second-Order Runge-Kutta Methods, MATLAB ode45 algorithm in single variable, Higher order Runge-Kutta methods, Error analysis of Runge-Kutta method

**ODE** solving in multiple variables, stiff systems, and practical problems: MATLAB ode45 algorithm in multiple variables, Stiff ODEs and MATLAB ode15s algorithm, Practical example for ODE-IVP, solving transient PDE using Method of Lines

#### **RBT Levels: L2 L3**

## Module-5: Matrices, Eigenvalues and Optimization

8 Hours

**Matrices and Eigenvalues:** Eigenvalues and Eigenvectors, Similarity Transformation and Diagonalization, Power Method, Jacobi Method

**MATLAB Built-In Routines for Optimization:** Unconstrained Optimization, Constrained Optimization, Linear Programming (LP)

## RBT Levels: L2 L3

#### IV. COURSE OUTCOMES

| CO1 | Obtain solutions to linear equations by various methods.                                       |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Carry out higher order interpolation of polynomials using finite difference method.            |
| CO3 | Apply finite difference method and find numerical solutions to spatial differential equations. |
| CO4 | Carry out numerical integration to find solutions to engineering applications.                 |

## **CO5** Find out solutions to ordinary differential equations using different methods.

#### **V. CO-PO-PSO MAPPING** (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|------------|----|------------|----|
| CO1    | 3 | 3 |   | 3 |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO2    | 3 | 3 |   | 3 |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO3    | 3 | 3 |   | 3 |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO4    | 3 | 3 |   | 3 |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO5    | 3 | 3 |   | 3 |   |   |   |   |   |    |    |    | 3          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

**Continuous Internal Evaluation (CIE):** 1 Refer Annexure section 1

| Semester 1 | End | Examination | ( <b>SEE</b> ): Refer | Annexure section 1 |
|------------|-----|-------------|-----------------------|--------------------|
|------------|-----|-------------|-----------------------|--------------------|

## VII. Learning Resources

## **VII: Reference Books:**

| 1 | Applied<br>Numerical<br>Analysis                                                           | Gerald, C.F. and<br>Wheatley, P. O   | 6 and 1999 | Pearson Education              |  |  |
|---|--------------------------------------------------------------------------------------------|--------------------------------------|------------|--------------------------------|--|--|
| 2 | Numerical<br>Methods for<br>Engineers with<br>Programming and<br>Software<br>Applications, | Chapra, S.C. and<br>Canale, R. P     | 3 and 1998 | Tata McGraw<br>Hill, New Delhi |  |  |
| 3 | Applied Numerical Methods for Engineers using Matlab and C                                 | Schilling, R.J. and<br>Harries, S. L | 2000       | Thomson<br>Brooks/Cole         |  |  |

## VII(c): Web links and Video Lectures (e-Resources):

Numerical methods - Course (nptel.ac.in)

Matlab Programming for Numerical Computation - Course (nptel.ac.in)

Applied Numerical Methods - Course (nptel.ac.in)

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## | Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) | SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. CAD Structures

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     | 1                      |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| Semester:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                   | Course                 | Type:                         | IPCC                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| Course Title: F                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inite l                                                                             | Element A              | Analysi                       | s of S                      | tructural Systems - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concepts and Proced                                                         | ures                                                                   |  |  |  |
| Course Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                                                                                   | 23CC                   | SI12                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Credits:                                                                    | 4                                                                      |  |  |  |
| Teachin                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıg Ho                                                                               | urs/Weel               | к (L:Т:                       | <b>P:O</b> )                | 3-0-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Hours:                                                                | 60                                                                     |  |  |  |
| CIE Marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | 50                     |                               | SEE<br>arks:                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Marks:                                                                | 100                                                                    |  |  |  |
| SEE Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |                        | T                             | heory                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exam Hours:                                                                 | 3 Hours                                                                |  |  |  |
| I.Course Objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| <ol> <li>To provide the fundamental concepts of theory of the finite element method.</li> <li>To develop proficiency in the application of the finite element method (modeling, analysis and interpretation of results) to practical engineering problems.</li> </ol>                                                                                                                                                                                                         |                                                                                     |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | II. Teaching-Learning Process (General Instructions):                               |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| Chalk and talk, v                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chalk and talk, videos, Power Point presentation, animations.                       |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                        |                               |                             | JRSE CONTENT Theory PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                                                        |  |  |  |
| Module-1: Intr                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oduc                                                                                | tion                   |                               | 111(a)                      | . Theory PART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | 8 Hours                                                                |  |  |  |
| differential equat<br>bars, exact soluti<br>(illustration abou<br>Raleigh-Ritz Met                                                                                                                                                                                                                                                                                                                                                                                            | tions, lon for the data.                                                            | Initial and axial defo | bounda<br>ormation<br>Axial E | nry val<br>n of a<br>Deform | ons Mathematical bac<br>ue problems, Different<br>uniform bar, tapered b<br>ation of Bars with unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tial equation for axial<br>ar with linearly varyi<br>form cross section usi | importance of<br>deformation of<br>ng cross section<br>ng Galerkin and |  |  |  |
| elements (Bar, Be coordinates. Inter                                                                                                                                                                                                                                                                                                                                                                                                                                          | eam, N<br>polati                                                                    | Iembrane,              | Plate ar                      | nd Shel                     | ocedure, Idealization of the control of the control of displacen of displacen or mulation using principal of the control of th | nent function, General                                                      |                                                                        |  |  |  |
| RBT Levels: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| Module-2: Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rpola                                                                               | tion (sha              | pe) fur                       | nction                      | s of Bar, Beam and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Triangular                                                                  | 8 Hours                                                                |  |  |  |
| Interpolation (shape) functions of Bar, Beam and Triangular elements, Bar elements: Generalized coordinate approach, Lagrange interpolation for Linear, quadratic and cubic variation in Generalized and natural coordinates. Beam elements: Two noded (Hermitian interpolation in generalized and natural coordinates). Triangular elements: Three nodes (Generalized and area coordinates), six nodes and transition elements with four and five nodes in area coordinates. |                                                                                     |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |
| Module-3: Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Module-3: Interpolation (shape) functions of Rectangular and Solid elements 8 Hours |                        |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                        |  |  |  |

Interpolation (shape) functions of Rectangular and Solid elements Rectangular elements: Four nodes (Cartesian, natural coordinates and Lagrange formula), eight nodes (serendipity element) in natural coordinates, Nine nodes (Lagrange element) using Lagrange formula and transition elements with seven nodes in natural coordinates. Tetrahedral element: Four nodes, ten nodes (volume coordinates), Hexahedron (Brick element): Lagrange formula in natural coordinates

**RBT Levels: L3** 

## **Module-4: Mapping techniques**

8 Hours

Mapping techniques using interpolation functions. Mapping a Straight Line, Curve, and quadrilateral areas with straight and curved edges, Requirement for valid mapping Guidelines for Mapped Element Shapes. Numerical examples

**RBT Levels: L3** 

CO4 CO5

## **Module-5: Numerical integration**

8 Hours

Numerical integration- Gauss quadrature. Line or one-Dimensional Integrals: One point, Two point and Three-point formula. Procedure and Numerical examples. Area or two-dimensional Integrals: procedure and Numerical examples. Volume or three- dimensional Integrals: procedure and Numerical examples.

| RBT 1      | Leve                                                                 | els: L3                             | 3      |         |        |         |          |         |         |         |         |         |         |         |         |      |
|------------|----------------------------------------------------------------------|-------------------------------------|--------|---------|--------|---------|----------|---------|---------|---------|---------|---------|---------|---------|---------|------|
|            |                                                                      |                                     |        |         | ]      | III(b)  | . PRA    | CTIC    | CAL P   | ART     |         |         |         |         |         |      |
| Sl.<br>No. |                                                                      | Experiments / Programs / Problems   |        |         |        |         |          |         |         |         |         |         |         |         |         |      |
| 1          |                                                                      | Excel page 2                        |        | ammir   | ng for | comp    | utatio   | n of A  | xial D  | eform   | ation   | of Ba   | rs with | n unifo | orm cr  | oss  |
| 2          |                                                                      | Excel page 2                        |        | ammir   | ng for | comp    | utatio   | n of A  | xial D  | eform   | ation   | of Ba   | rs with | n unifo | orm cı  | OSS  |
| 3          | F                                                                    | Excel                               | progra | ammir   | g for  | Analy   | sis of   | two n   | odded   | beam    | eleme   | ent     |         |         |         |      |
| 4          | F                                                                    | Excel 1                             | progra | ammir   | g for  | Analy   | sis of   | three   | nodde   | d bear  | n elen  | nent    |         |         |         |      |
| 5          | I                                                                    | Progra                              | mmin   | g for a | analys | is of s | serend   | ipity e | elemen  | nt      |         |         |         |         |         |      |
| 6          | I                                                                    | Progra                              | mmin   | g for a | analys | is of I | Lagrar   | ige ele | ement   |         |         |         |         |         |         |      |
| 7          | I                                                                    | Progra                              | mmin   | g for l | Mappi  | ng a S  | Straigh  | nt Line | 2       |         |         |         |         |         |         |      |
| 8          | F                                                                    | Programming for quadrilateral areas |        |         |        |         |          |         |         |         |         |         |         |         |         |      |
| 9          | F                                                                    | Progra                              | mmin   | g for l | Nume   | rical i | ntegra   | tion -  | Line o  | or one- | -Dime   | nsion   | al Inte | grals   |         |      |
| 10         | I                                                                    | Progra                              | mmin   | g for l | Nume   | rical i | ntegra   | tion -  | quadr   | ilatera | l areas | S       |         |         |         |      |
|            |                                                                      |                                     |        |         |        | IV.C    | OURS     | E OU    | TCO     | MES     |         |         |         |         |         |      |
| CO1        | I                                                                    | Explai                              | n the  | basic t |        |         |          |         |         | nt met  | hod     |         |         |         |         |      |
| CO2        |                                                                      | Formu<br>FEA.                       | late a | nd ana  | alyze  | shape   | functi   | ons fo  | or line | , bean  | and 1   | triang  | ular el | emen    | ts used | l in |
| CO3        | F                                                                    | Formu                               | late a | nd ana  | lyze s | hape    | function | ons fo  | r recta | ngula   | r and b | orick e | elemer  | its use | ed in F | EA   |
| CO4        | ļ Ū                                                                  | Jse th                              | e map  | ping t  | echnic | ques f  | or diff  | erent   | eleme   | nt shaj | pes     |         |         |         |         |      |
| COS        | CO5 Implement numerical integration techniques to solve FEA problems |                                     |        |         |        |         |          |         |         |         |         |         |         |         |         |      |
|            | 1                                                                    |                                     | ,      | v.co    | -PO-I  | PSO N   | ИАРР     | ING     | (mark   | H=3;    | M=2;    | L=1)    |         |         |         |      |
| PO/PSO     | 1                                                                    | 2                                   | 3      | 4       | 5      | 6       | 7        | 8       | 9       | 10      | 11      | 12      | S1      | S2      | S3      | S4   |
| CO1        | 3                                                                    | 3                                   |        | 2       | 3      |         |          |         |         |         |         | 2       | 3       |         |         |      |
| CO2        | 3                                                                    | 3                                   |        | 2       | 3      |         |          |         |         |         |         | 2       | 3       |         |         |      |
| CO3        | 3                                                                    | 3                                   |        | 2       | 3      |         |          |         |         |         |         | 2       | 3       |         |         |      |

## VI.Assessment Details (CIE & SEE)

**General Rules:** Refer Annexure section 2

**Continuous Internal Evaluation (CIE):** 1 Refer Annexure section 2

**Semester End Examination (SEE):** Refer Annexure section 2

## **VII. Learning Resources**

## VII.(a): Reference Books:

| Sl.<br>No. | Title of the Book      | Name of the author        | Edition and Year | Name of the publisher |
|------------|------------------------|---------------------------|------------------|-----------------------|
| 1          | The finite element     | Zeinkiewicz, O. C. and    | 2013             | Butterworh –          |
|            | method for solid and   | Taylor R.L.,              |                  | Heinemann             |
|            | structural mechanics   |                           |                  |                       |
| 2          | Finite Element         | Krishnamoorthy C. S.,     | 2017             | Tata McGraw Hill      |
|            | Analysis: Theory and   |                           |                  | Publishing Co.        |
|            | programming            |                           |                  | Ltd.,                 |
| 3          | Fundamental finite     | M. Asghar Bhatti          | 2005             | John Wiley &          |
|            | element analysis and   |                           |                  | Sons                  |
|            | applications           |                           |                  |                       |
| 4          | Concepts and           | Robert D Cook, Malkas,    | 2007             | John Wiley and        |
|            | Applications of Finite | D. S. and Plesha., M. E., |                  | Sons                  |
|            | Element Analysis       |                           |                  |                       |

## VII(b): Web links and Video Lectures (e-Resources):

https://www.digimat.in/nptel/courses/video/112104193/L01.htmlhttp://www.digimat.in/nptel/courses/video/112104205/L24.html

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cou                                                               | ırse Type: | PCC    |                   |              |        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------|--------|-------------------|--------------|--------|--|
| Course Title:                                                                                                                                                                                                                                                                                                                                  | Course Title: Computational Structural Mechanics - Classical and FE approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |            |        |                   |              |        |  |
| Course Code                                                                                                                                                                                                                                                                                                                                    | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                | BCCST13    |        |                   | Credits:     | 3      |  |
| Teachi                                                                                                                                                                                                                                                                                                                                         | ng Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | urs/V                                                             | Veek (L:T: | :P:O)  | 3-0-0-0           | Total Hours: | 40     |  |
| CIE Marks                                                                                                                                                                                                                                                                                                                                      | : 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50         SEE Marks:         50         Total Marks:         100 |            |        |                   |              |        |  |
| SEE Type:                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | Т          | Theory |                   | Exam Hours:  | 03     |  |
|                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |            | I. Co  | ourse Objectives: |              |        |  |
| IV. Achieve<br>V. Implem                                                                                                                                                                                                                                                                                                                       | F and B and B and F and B and |                                                                   |            |        |                   |              |        |  |
| Module-1: Introd                                                                                                                                                                                                                                                                                                                               | luction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |            |        |                   |              | 08 Hrs |  |
| Degrees of Stati<br>Coordinate Syste<br>boundary condit<br>Numerical exam                                                                                                                                                                                                                                                                      | Direct Stiffness Method – Trusses  Degrees of Static and Kinematic indeterminacies, Concepts of Stiffness and Flexibility, Local and Global Coordinate System, Analysis of indeterminate Trusses, with and without initial strains for different types of boundary conditions such as Fixed, Hinged, Roller, Slider, Elastic (Spring) supports, support settlement. Numerical examples.  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |            |        |                   |              |        |  |
| Module-2:                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |            |        |                   |              | 08 Hrs |  |
| Direct Stiffness Method - Continuous Beam, and Frames. Analysis of Continuous beams, for different types of boundary conditions such as Fixed, Hinged, Roller, Slider, Elastic (Spring) supports, support settlement. Numerical examples. Element stiffness matrix formulation for 2D, Grids and 3D frames (Local and Global).  RBT Levels: L3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |            |        |                   |              |        |  |
| Module-3:                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |            |        |                   |              | 08 Hrs |  |

FE Analysis using Bar Elements: Element Stiffness matrix of two and three noded elements. Examples with constant and varying cross sectional area subjected to concentrated loads, distributed body force and surface traction and Initial strains due to temperature.

**RBT Levels: L3** 

Module-4: 08 Hrs

Isoparametric formulation of Bar Elements. Element stiffness matrix of two noded element with constant area, linear variation in area, Consistent Load due to body force, Surface traction. Element stiffness matrix of three noded bar Element, Consistent load due to UDL, Linearly Varying Load, Quadratic Varying Load.

**RBT Levels: L3** 

Module-5: 08 Hrs

FE Analysis using Beam Element. Element Stiffness matrix, Consistent Nodal loads, Concept of Reduced or Lumped Loads, Examples. Cantilever and Simply Supported beams.

**RBT Levels: L3** 

#### IV. COURSE OUTCOMES

| CO1 | Apply direct stiffness method and analyse 2-D truss and frame structures |
|-----|--------------------------------------------------------------------------|
| CO2 | Formulate Finite Element method with respect to structures.              |
| CO3 | Formulate and apply FEM to bar and beam elements.                        |
| CO4 | Apply knowledge of problem-solving skills using computer aided methods.  |

|        | V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|--------|-------------------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| PO/PSO | 1                                         | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
| CO1    | 3                                         | 3 |   | 2 |   |   |   |   |   |    |    | 2  | 3  |    |    |    |
| CO2    | 3                                         | 3 |   | 2 |   |   |   |   |   |    |    | 2  | 3  |    |    |    |
| CO3    | 3                                         | 3 |   | 2 |   |   |   |   |   |    |    | 2  | 3  |    |    |    |
| CO4    | 3                                         | 3 |   | 2 |   |   |   |   |   |    |    | 2  | 3  |    |    |    |
| CO5    | 3                                         | 3 |   | 2 |   |   |   |   |   |    |    | 2  | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): 1 Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

## VII. Learning Resources

#### VII.(a): Reference Books:

| `          | <u> </u>                                             |                                                        |                         |                                                      |
|------------|------------------------------------------------------|--------------------------------------------------------|-------------------------|------------------------------------------------------|
| Sl.<br>No. | Title of the Book                                    | Name of the author                                     | <b>Edition and Year</b> | Name of the publisher                                |
| 1          | , Computational<br>Structural<br>Mechanics           | Rajasekaran, S. and Shankarsubramanian                 | 2001                    | PHI                                                  |
| 2          | Matrix analysis of framed structures                 | Weaver, W. and<br>Gere, J. M.                          | 2004                    | CBS Publishers<br>and Distributors<br>Pvt.<br>Ltd. 2 |
| 3          | Basic Structural Analysis                            | Reddy. C. S                                            | 2001                    | TMH                                                  |
| 4          | Concepts and Applications of Finite Element Analysis | Robert D Cook,<br>Malkas, D. S. and<br>Plesha., M. E., | 3, 2007                 | John Wiley and<br>Sons                               |

#### VII(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/105/107/105107209/

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                      | I                                                            | Course Type: | PCC | PCC     |  |              |    |  |  |  |  |
|--------------------------------|--------------------------------------------------------------|--------------|-----|---------|--|--------------|----|--|--|--|--|
| Course Title                   | Course Title: Continuum mechanics –Classical and FE approach |              |     |         |  |              |    |  |  |  |  |
| Course Code                    | Course Code: 23CCST14 Credits: 3                             |              |     |         |  |              |    |  |  |  |  |
| Teaching Ho                    | urs/We                                                       | ek (L:T:P:O) |     | 3:0:0:0 |  | Total Hours: | 40 |  |  |  |  |
| CIE Marks:                     | CIE Marks: 50 SEE Marks: 50 Total Marks: 100                 |              |     |         |  |              |    |  |  |  |  |
| SEE Type: Theory Exam Hours: 3 |                                                              |              |     |         |  |              |    |  |  |  |  |
|                                |                                                              | _            |     | ~ ~.    |  |              | •  |  |  |  |  |

#### I. Course Objectives:

#### This course will enable students to

- 1. Apply knowledge of mathematics, science, and engineering by developing the equations of motion for vibratory systems and solving for the free and forced response.
- 2. Formulate, analyze and solve problems in elasticity using classical approach.
- 3. Carry out the formulation of and implementation of Iso-parametric finite element models for twoand three-dimensional deforming bodies
- 4. Use finite element methods for solving continuum mechanics problems.
- 5. Read and comprehend scientific articles in the field of Computational Mechanics of deformable bodies.

#### **II. Teaching-Learning Process (General Instructions):**

The question paper will have ten questions, carrying equal marks. There will be two full questions with a maximum four sub questions from each module. Students shall answer five full questions selecting one full question from each module.

#### III. COURSE CONTENT

## III(a). Theory PART

Module-1: 8 Hrs

#### **Basic Concepts**

Definition of stress and strain at a point, components of stress and strain at a point, strain displacement relations in Cartesian co-ordinates, constitutive relations, equilibrium equations, compatibility equations and boundary conditions in 2-D and 3-D cases, plane stress, plane strain – Definition.

#### **Pre-requisites (Self Learning)**

1. Strength of Materials

#### **RBT Levels: L1,L3**

Module-2: 8 Hrs

Two-dimensional problems in Rectangular Coordinates: Airy's stress function approach to 2-D problems of elasticity. Solution by Polynomials, End Effects, Saint Venant's Principle, solution of some simple beam problems, including working out of displacement components.

#### **Pre-requisites**

1. Strength of Materials

RBT Levels: L1,L5

Module-3: 8 Hrs

Two - dimensional problems in Polar coordinates: General equation in Polar coordinates—Strain and displacement relations, equilibrium equations - Stress distribution symmetrical about an axis — Pure bending of curved bars — Displacements for symmetrical stress distributions —Bending of a curved bar by a force at the end — The effect of a small circular hole on stress distribution in a large plate subjected to uni axial tension and pure shear.

#### **Pre-requisites**

1. Theory of Elasticity

**RBT Levels: L1,L5** 

Module-4: 8 Hrs

Analysis of Stress and Strain in Three Dimensions: Introduction, Principal stresses, Determination of the principal stresses and principal planes, Stress invariants, Determination of the maximum shearing stress, Octahedral stress components, Principal strains, strain invariants.

## Pre-requisites

1. Strength of Materials

**RBT Levels: L1,L3** 

Module-5: 8 Hrs

FE approach: FE formulation using CST Elements, Element Nodal load vector- Body force, surface traction, Numerical examples. Isoparametric formulation of General Quadrilateral Elements in Two Dimensions, Strain-displacement matrix, Element stiffness matrix, Numerical examples. Computation of Nodal Loads in rectangular element, Linear and quadratic variation in displacement and load. Finite Element Formulation of Axisymmetric triangular Element.

#### **Pre-requisites**

- 1. Structural analysis
- 2. Matrix method of Analysis.

#### **RBT Levels: L1,L3**

#### IV. COURSE OUTCOMES

On completion of this course, students will be able to:

| CO1 | Formulate equilibrium equations for simple structures.                                                           |
|-----|------------------------------------------------------------------------------------------------------------------|
| CO2 | Describe the continuum in 2 and 3-dimensions with rectangular and polar coordinate systems.                      |
| CO3 | Analyse the principles of stress-strain behaviour of continuum with classical approach.                          |
| CO4 | Formulation and implementation of isoparametric finite element models for 2 and 3- dimensional deforming bodies. |
| CO5 | Use finite element method for solving continuum mechanics problems.                                              |

#### **V. CO-PO-PSO MAPPING** (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| CO1    | 2 | 1 |   |   |   |   |   |   |   | 1  | 2  |    |    |    |    |    |
| CO2    | 3 | 2 | 1 |   |   |   |   |   |   | 2  | 2  |    |    |    |    |    |
| CO3    | 3 | 3 | 2 | 1 |   |   |   |   |   | 2  | 2  |    |    |    |    |    |
| CO4    | 3 | 2 | 1 |   |   |   |   |   |   | 2  | 2  |    |    |    |    |    |
| CO5    | 2 | 2 | 1 |   |   |   |   |   |   | 2  | 2  |    |    |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): 1 Refer Annexure section 1

**Semester End Examination (SEE):** Refer Annexure section 1

## VII. Learning Resources

## VII.(a): Reference Books:

| Sl.<br>No. | Title of the Book                                          | Name of the author        | Edition and Year  | Name of the publisher           |
|------------|------------------------------------------------------------|---------------------------|-------------------|---------------------------------|
| 1          | Theory of elasticity                                       | Timoshenko and<br>Goodier | III Edition, 1983 | McGraw Hill Book<br>Company     |
| 2          | Continuum<br>Mechanics<br>fundamentals                     | Valliappan. S,            | 1981              | Oxford and IBH                  |
| 3          | Advanced<br>Mechanics of solids                            | Srinath L. S.,            | 10th Print 1994   | Tata McGraw Hill Publishing Co. |
| 4          | Theory of Elasticity                                       | Verma P. D. S             | 1997              | Khanna Publishers               |
| 5          | Finite element<br>procedures in<br>Engineering<br>Analysis | Bathe. K.J,               | 2007              | PHI. NewDelhi                   |

## VII(b): Web links and Video Lectures (e-Resources):

Mention the links of the online resources, video materials, etc.

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                         | Ι                                                          | Course Type: | PCC   |    |              |     |
|-----------------------------------|------------------------------------------------------------|--------------|-------|----|--------------|-----|
| Course Title:                     | Course Title: STRUCTURAL DYNAMICS- THEORY AND COMPUTATIONS |              |       |    |              |     |
| Course Code: 23CCST15 Credits: 03 |                                                            |              |       |    |              |     |
| Teaching Ho                       | Teaching Hours/Week (L:T:P:O) 3:0:0:2 Total Hours: 40      |              |       |    |              |     |
| CIE Marks:                        | 5                                                          | 0 SEE M      | arks: | 50 | Total Marks: | 100 |
| SEE Type:                         | <b>Theory Exam Hours:</b> 03                               |              |       |    |              |     |
| I. Course Objectives:             |                                                            |              |       |    |              |     |

- 1. Understand effect of structural vibrations on safety and reliability of structural systems (L2).
- 2. Apply knowledge of mathematics, science, and engineering by developing the equations of motion for vibratory systems and solving for the free and forced response (L3).
- 3. Apply modal methods to calculate the forced response of these systems(L3).
- 4. Use finite element methods for the analysis of the vibrations of structures(L4).

## **II. Teaching-Learning Process (General Instructions):**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

**Module-1:** (Introduction )

8 Hrs

**Introduction:** Introduction to Dynamic problems in Civil Engineering, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles. Dynamics of Single degree-of-freedom systems: Mathematical models of Single-degree-of-freedom systems system, Free vibration response of damped and undamped systems including methods for evaluation of damping.

**RBT Levels: L1 L2** 

Module-2: (SDOF) 8 Hrs

Response of Single-degree-of-freedom systems to harmonic loading including support motion, vibration isolation, transmissibility. Numerical methods applied to Single- degree-of-freedom systems – Duhamel's integral. Principle of vibration measuring instruments— seismometer and accelerometer.

**RBT Levels: L2 L3** 

Module-3: (MDOF) 8 Hrs

Dynamics of multi-degree freedom systems: Mathematical models of multi-degree-of freedom systems, Shear building concept, free vibration of undamped multi-degree-of freedom systems – Natural frequencies and mode shapes – Orthogonality of modes.

#### **RBT Levels: L2 L3**

Module-4: (Shear Building)

8 Hrs

Response of Shear buildings for harmonic loading without damping using normal mode approach. Response of Shear buildings for forced vibration for harmonic loading with damping using normal mode approach.

#### **RBT Levels: L2 L3**

**Module-5:** (Numerical methods)

8 Hrs

Approximate methods: Rayleigh's method, Dun Karley's method, Stodola's method, Dynamics of Continuous systems: Flexural vibration of beams with different end conditions. Stiffness matrix, mass matrix (lumped and consistent).

#### **RBT Levels: L2 L3**

#### IV. COURSE OUTCOMES

| CO1 | Evaluate the effect of structural vibrations on safety and reliability of structural systems. |
|-----|-----------------------------------------------------------------------------------------------|
| CO2 | Develop and solve equations of motion for free and forced response of structural systems.     |
| CO3 | Analyse damping and its influence on structural response.                                     |
| CO4 | Apply modal method to compute forced response of SDOF and MDOF systems.                       |
| CO5 | Carry out dynamic analysis of beams using FEM.                                                |

## V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| CO1    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO2    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO3    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO4    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO5    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

**General Rules:** Refer Annexure section 1

Continuous Internal Evaluation (CIE): 1 Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. **Learning Resources**

## VII(a): Reference Books:

| Sl.<br>No. | Title of the Book                                         | Name of the author | Edition and Year | Name of the publisher          |
|------------|-----------------------------------------------------------|--------------------|------------------|--------------------------------|
| 1          | Dynamics of<br>structures –<br>Theory and<br>Applications | Anil K. Chopra     | 2 and 2012       | Pearson Education              |
| 2          | Structural dynamics -                                     | Mario Paz          | 2 and 2004       | CBS Publisher and Distributors |

|   | Theory and computations                            |             |      |       |
|---|----------------------------------------------------|-------------|------|-------|
| 3 | Earthquake Resistant Design of Building Structures | Vinod Hosur | 2012 | Wiley |

## VII(c): Web links and Video Lectures (e-Resources):

NPTEL :: Civil Engineering - NOC:Structural Dynamics

NPTEL :: Civil Engineering - NOC:Structural Dynamics for Civil Engineers - SDOF systems

**Dynamics of Structures - Course (nptel.ac.in)** 

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

• Conduction of technical seminars on recent research activities

• Group Discussion



## STI Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                        | I                                          | Cour    | se Type: | PCC   |         |  |              |     |  |  |  |  |
|----------------------------------|--------------------------------------------|---------|----------|-------|---------|--|--------------|-----|--|--|--|--|
| Course Tit                       | Course Title: Research methodology and IPR |         |          |       |         |  |              |     |  |  |  |  |
| Course Code: 23CCST16 Credits: 3 |                                            |         |          |       |         |  |              |     |  |  |  |  |
| Teaching Hou                     | ırs/We                                     | ek (L:' | T:P:O)   |       | 3:0:0:0 |  | Total Hours: | 3   |  |  |  |  |
| CIE Marks:                       | 4                                          | 50      | SEE Ma   | rks:  | 50      |  | Total Marks: | 100 |  |  |  |  |
| SEE Type:                        |                                            |         | Т        | heory |         |  | Exam Hours:  | 3   |  |  |  |  |

#### I. Course Objectives:

- 1.To understand the process of research & identify good research and the problems encountered by researchers.
- 2. To collect various research design & features of a good design in order to apply in design of experiments.
- 3. To test the hypotheses, interpret and writing research reports.

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

**Research Methodology:** Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration

RBT Levels: L1, L2

Module-2:

**Reviewing the literature:** Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs.

RBT Levels: L1, L2

Module-3: 8 hrs

**Design of Sampling:** Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs.

Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale.

Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method

**RBT Levels: L1,L2** 

Module-4: 8 hrs

**Testing of Hypotheses:** Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis

**RBT Levels: L1 L2** 

Module-5: 8 hrs

**Interpretation and Report Writing:** Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

**Intellectual Property:** The Concept, Intellectual Property System in India, **Protection of** Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patents, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Circuits, Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.

**RBT Levels: L1 L2** 

| Г      | IV. COURSE OUTCOMES After studying this course, students will be able to:                                                                                               |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------|------|------|------|-------|----|--|--|--|--|--|--|
| CO1    | Discuss research methodology and the technique of defining a research problem                                                                                           |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO2    |                                                                                                                                                                         | Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO3    | -                                                                                                                                                                       | Explain various research designs, sampling designs, measurement and scaling techniques and also different methods of data collections.                              |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO4    | Explain several parametric tests of hypotheses, art of interpretation and writing research reports & discuss various forms of the intellectual property & its relevance |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
|        |                                                                                                                                                                         |                                                                                                                                                                     |  |  | V. ( | CO-P | O-PS | O MA | APPIN | NG |  |  |  |  |  |  |
| PO/PSO | O 1 2 3 4 5 6 7 8 9 10 11 12 S1 S2 S3 S4                                                                                                                                |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO1    | 3 2 1 1 2                                                                                                                                                               |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO2    | 3 2 2 2 2 2 2 2 2 3 1 2                                                                                                                                                 |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO3    | 3 2 3 3 2 1 1 2 1                                                                                                                                                       |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |
| CO4    | 3 2 3 3 2 3 3 1 2                                                                                                                                                       |                                                                                                                                                                     |  |  |      |      |      |      |       |    |  |  |  |  |  |  |

VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): 1 Refer Annexure section 1

**Semester End Examination (SEE):** Refer Annexure section 1

| VII. Learning Resources   |                     |                           |                  |               |  |  |  |  |  |  |  |
|---------------------------|---------------------|---------------------------|------------------|---------------|--|--|--|--|--|--|--|
| VII.(a): Reference Books: |                     |                           |                  |               |  |  |  |  |  |  |  |
|                           | Research            |                           |                  |               |  |  |  |  |  |  |  |
| 1                         | Methodology:        | C.R. Kothari, Gaurav Garg | Edition 4 & 2013 | New Age       |  |  |  |  |  |  |  |
| 1                         | Methods and         | C.K. Koman, Gaurav Garg   | Edition 4 & 2013 | International |  |  |  |  |  |  |  |
|                           | Techniques          |                           |                  |               |  |  |  |  |  |  |  |
|                           | Research            |                           |                  |               |  |  |  |  |  |  |  |
| 2                         | Methodology a step- | Ranjit Kumar              | Edition 3 & 2011 | SAGE          |  |  |  |  |  |  |  |
| 2                         | by-step guide for   | Kanjit Kumai              | Edition 5 & 2011 | SAGE          |  |  |  |  |  |  |  |
|                           | beginners           |                           |                  |               |  |  |  |  |  |  |  |
|                           | Research Methods:   |                           |                  | Atomic Dog    |  |  |  |  |  |  |  |
| 3                         | the concise         | Trochim,                  | Edition 1 & 2005 | Publishing    |  |  |  |  |  |  |  |
|                           | knowledge base      |                           |                  | Fuorishing    |  |  |  |  |  |  |  |
|                           | Conducting          |                           |                  |               |  |  |  |  |  |  |  |
| 4                         | Research Literature | Fink A                    | Edition 1 & 2009 | SAGE          |  |  |  |  |  |  |  |
|                           | Reviews             |                           |                  |               |  |  |  |  |  |  |  |

## VII(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=E2gGF1rburw

https://www.youtube.com/watch?

=5fvpsqPWZac&list=PLyqSpQzTE6M8PuzP1p2hNPXgpbOBhFgja

https://www.youtube.com/watch?v=yplWZs3dqNQ

https://www.youtube.com/watch?v=51HnRTt4KeQ

https://www.youtube.com/watch?v=WvduZOWoft0&t=100

https://www.youtube.com/watch?v=WvduZOWoft0&t=316

https://www.youtube.com/watch?v=WvduZOWoft0&t=603

https://www.youtube.com/watch?v=WvduZOWoft0&t=729

https://www.youtube.com/watch?v=WvduZOWoft0&t=831

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion





Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

## M. Tech. CAD Structures

| Semes      | ster:                                                                                               | 1    | Cou    | rse Type:     | PCC     | L                       |                     |        |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------|------|--------|---------------|---------|-------------------------|---------------------|--------|--|--|--|
| Course '   | Title: C                                                                                            | AD I | LAB –  | FE PROC       | GRAM    | MING                    |                     |        |  |  |  |
| Course     | e Code                                                                                              | :    | 23     | CCSL17        |         |                         | Credits:            | 1      |  |  |  |
| 7          | Гeachin                                                                                             | g Ho | urs/W  | Veek (L:T:    | P:O)    | 0:2:0:2                 | Total Hours:        | 50     |  |  |  |
| CIE N      | Marks:                                                                                              | 50   | O      | SEE Ma        | irks:   | 50                      | Total Marks:        | 100    |  |  |  |
| SEE        | Type:                                                                                               |      |        | Pı            | actica  | 1                       | Exam Hours:         | 03     |  |  |  |
|            |                                                                                                     |      |        | I.            |         | Course Objectives:      |                     |        |  |  |  |
|            | To develop programs using concept of finite element method to solve practical engineering problems. |      |        |               |         |                         |                     |        |  |  |  |
|            | II. COURSE CONTENT                                                                                  |      |        |               |         |                         |                     |        |  |  |  |
|            | PRACTICAL PART                                                                                      |      |        |               |         |                         |                     |        |  |  |  |
| Sl.<br>No. | Experiments / Programs / Problems                                                                   |      |        |               |         |                         |                     |        |  |  |  |
| 1          | Progr                                                                                               | ammi | ng to  | generate el   | lemen   | t mesh using 6 nodde    | ed triangular eleme | ents   |  |  |  |
| 2          | Progr                                                                                               | ammi | ng to  | generate e    | lemen   | t mesh using serendi    | pity elements       |        |  |  |  |
| 3          | Progr                                                                                               | ammi | ng to  | generate e    | lemen   | t mesh using Legrans    | ge elements         |        |  |  |  |
| 4          | Progr                                                                                               | ammi | ng to  | solve a sta   | tic bea | am deflection using I   | Hermitian beam el   | ements |  |  |  |
| 5          | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a truss struct | ure                 |        |  |  |  |
| 6          | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a truss struct | ure                 |        |  |  |  |
| 7          | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a continuous   | beam                |        |  |  |  |
| 8          | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a continuous   | beam                |        |  |  |  |
| 9          | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a rigid jointe | ed frame            |        |  |  |  |
| 10         | Progr                                                                                               | ammi | ng for | r linear stat | tic ana | lysis of a rigid jointe | ed frame            |        |  |  |  |
| Instruc    | uctions for conduction of practical part:                                                           |      |        |               |         |                         |                     |        |  |  |  |
|            |                                                                                                     |      |        |               |         | RSE OUTCOMES            |                     |        |  |  |  |
| CO1        |                                                                                                     |      |        |               |         | ne finite element met   |                     |        |  |  |  |
| CO2        | FEA.                                                                                                |      |        |               |         | ctions for line, beam   |                     |        |  |  |  |
| CO3        | Formulate and analyze shape functions for rectangular and brick elements used in FEA.               |      |        |               |         |                         |                     |        |  |  |  |

| CO4    | , U | Use the mapping techniques for different element shapes          |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|--------|-----|------------------------------------------------------------------|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| CO5    | ; I | Implement numerical integration techniques to solve FEA problems |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|        |     | <b>IV. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1)                |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| PO/PSO | 1   | 2                                                                | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
| CO1    | 3   | 3                                                                |   | 3 | 3 |   |   |   |   |    |    | 3  | 3  |    |    |    |
| CO2    | 3   | 3                                                                |   | 3 | 3 |   |   |   |   |    |    | 3  | 3  |    |    |    |
| CO3    | 3   | 3                                                                |   | 3 | 3 |   |   |   |   |    |    | 3  | 3  |    |    |    |
| CO4    | 3   | 3 3 3 3                                                          |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| CO5    | 3   | 3 3 3 3                                                          |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

## V. Assessment Details (CIE & SEE)

**General Rules:** Refer Annexure section 3

**Continuous Internal Evaluation (CIE):** Refer Annexure section 3

Semester End Examination (SEE): Refer Annexure section 3

## VI. Learning Resources

## **VII: Reference Books:**

| Sl.<br>No. | Title of the Book        | Name of the author                    | Edition and Year | Name of the publisher |
|------------|--------------------------|---------------------------------------|------------------|-----------------------|
| 1          | The finite element       | · · · · · · · · · · · · · · · · · · · | 2013             | Butterworh –          |
|            | method for solid         | and Taylor R.L.,                      |                  | Heinemann             |
|            | and structural           |                                       |                  |                       |
| 2          | mechanics Finite Element | Krishnamoorthy C.                     | 2017             | Tata McGraw Hill      |
| 2          | Analysis: Theory         | S.,                                   | 2017             | Publishing Co.        |
|            | and programming          | 5.,                                   |                  | Ltd.,                 |
| 3          | Fundamental              | M. Asghar Bhatti                      | 2005             | John Wiley &          |
|            | finite element           |                                       |                  | Sons                  |
|            | analysis and             |                                       |                  |                       |
|            | applications             |                                       |                  |                       |
| 4          | Concepts and             | Robert D Cook,                        | 2007             | John Wiley and        |
|            | Applications of          | Malkas, D. S. and                     |                  | Sons                  |
|            | Finite Element           | Plesha., M. E.,                       |                  |                       |
|            | Analysis                 |                                       |                  |                       |

## VII(c): Web links and Video Lectures (e-Resources):

https://www.digimat.in/nptel/courses/video/112104193/L01.htmlhttp://www.digimat.in/nptel/courses/video/112104205/L24.html

## VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology GS Health and Education City Dr. Vishnuyardhana Road, Kengeri, Rengaluru-560060



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.
Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

## M. Tech. In CAD Structures

| Course Code: 23CCS121 Credits: 4  Teaching Hours/Week (L:T:P:O) 3:0:2:0 Total Hours: 60  CIE Marks: 50 SEE Marks: 50 Total Marks: 100  SEE Type: Theory Exam Hours: 03  I. Course Objectives:  • Apply knowledge of mathematics, science, and engineering related to plate theory • Analyse the structural elements consisting of curved surfaces • Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3  Module-5: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3  Module-5: 08 Hrs | Semester:                                                                                                                                | II       | Co    | urse Type: IP | PCC                |               |                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------------|--------------------|---------------|------------------|--|--|--|--|--|
| Teaching Hours/Week (L:T:P:O) 3:0:2:0 Total Hours: 60  CIE Marks: 50 SEE Marks: 50 Total Marks: 100  SEE Type: Theory Exam Hours: 03  I. Course Objectives:  • Apply knowledge of mathematics, science, and engineering related to plate theory • Analyse the structural elements consisting of curved surfaces • Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Course Title: Analysis of Plates and shells – Classical and FE Approach                                                                  |          |       |               |                    |               |                  |  |  |  |  |  |
| CIE Marks: 50 SEE Marks: 50 Total Marks: 100  SEE Type: Theory Exam Hours: 03  I. Course Objectives:  • Apply knowledge of mathematics, science, and engineering related to plate theory • Analyse the structural elements consisting of curved surfaces • Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction 08 Hrs Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerica examples  RBT Levels: L3  Module-2: 08 Hrs Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                  | <b>Course Code:</b>                                                                                                                      |          | 2     | 3CCSI21       |                    | Credits:      | 4                |  |  |  |  |  |
| I. Course Objectives:  Apply knowledge of mathematics, science, and engineering related to plate theory Analyse the structural elements consisting of curved surfaces Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3:  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                  | Teaching Hou                                                                                                                             | rs/We    | ek (I | L:T:P:O)      | 3:0:2:0            | Total Hours:  | 60               |  |  |  |  |  |
| I. Course Objectives:  Apply knowledge of mathematics, science, and engineering related to plate theory Analyse the structural elements consisting of curved surfaces Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CIE Marks:                                                                                                                               | 5        | 0     | SEE Mark      | s: 50              | Total Marks:  | 100              |  |  |  |  |  |
| Apply knowledge of mathematics, science, and engineering related to plate theory Analyse the structural elements consisting of curved surfaces Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction  O8 Hrs  Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2:  O8 Hrs  Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3:  O8 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  O8 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                       | SEE Type:                                                                                                                                |          |       | Theo          | ory                | Exam Hours:   | 03               |  |  |  |  |  |
| Analyse the structural elements consisting of curved surfaces     Use finite element methods in plate analysis.  II. Teaching-Learning Process (General Instructions):  Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction 08 Hrs Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                          |                                                                                                                                          | •        |       | I.            | Course Objectives: |               |                  |  |  |  |  |  |
| Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction 08 Hrs  Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs  Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Analyse the structural elements consisting of curved surfaces</li> <li>Use finite element methods in plate analysis.</li> </ul> |          |       |               |                    |               |                  |  |  |  |  |  |
| III. COURSE CONTENT  III(a). THEORY PART  Module-1: Introduction 08 Hrs Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chalk and talk                                                                                                                           |          |       |               |                    | mstructions): |                  |  |  |  |  |  |
| Module-1: Introduction 08 Hrs Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - Chark and tank,                                                                                                                        | · ideos, | 1000  | *             | •                  |               |                  |  |  |  |  |  |
| Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs  Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |          |       |               |                    |               |                  |  |  |  |  |  |
| Introduction to plate theory, Small deflection of laterally loaded thin rectangular plates for pure bending Navier's and Levy's solution for various lateral loading and boundary conditions (No derivation), Numerical examples  RBT Levels: L3  Module-2: 08 Hrs  Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3: 08 Hrs  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4: 08 Hrs  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Module-1: Intr                                                                                                                           | oductio  | on    | 111(4         | J. HILORI ITARI    |               | 08 Hrs           |  |  |  |  |  |
| Module-2:  Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3:  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Navier's and Le                                                                                                                          |          |       |               |                    |               |                  |  |  |  |  |  |
| Introduction to curved surfaces and classification of shells, Membrane theory of spherical shells, cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3:  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>RBT Levels:</b>                                                                                                                       | L3       |       |               |                    |               |                  |  |  |  |  |  |
| cylindrical shells, hyperbolic paraboloids, elliptic paraboloid and conoids  RBT Levels: L3  Module-3:  Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Module-2:</b>                                                                                                                         |          |       |               |                    |               | 08 Hrs           |  |  |  |  |  |
| Axially symmetric bending of shells of revolution, closed cylindrical shells, water tanks, spherical shells and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cylindrical shel                                                                                                                         | ls, hype |       |               |                    | •             | pherical shells, |  |  |  |  |  |
| and Geckler's approximation. Bending theory of doubly curved shallow shells.  RBT Levels: L3  Module-4:  Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Module-3:                                                                                                                                |          |       |               |                    |               | 08 Hrs           |  |  |  |  |  |
| Design and detailing of folded plates with numerical examples Design and Detailing of simple shell problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Geckler's approximation. Bending theory of doubly curved shallow shells.                                                             |          |       |               |                    |               |                  |  |  |  |  |  |
| problems – spherical domes, water tanks, barrel vaults and hyperbolic paraboloid roofs  RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |          |       |               |                    |               | 08 Hrs           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Design and deproblems – sph                                                                                                              | erical d |       | •             | •                  |               |                  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Module-5:                                                                                                                                |          |       |               |                    |               | 08 Hrs           |  |  |  |  |  |

| Bendi           | ng El                                                                                               | ement                                      | , Finite       |                   | Analysi<br>ent An |                |              |         | iangulaı<br>ate. | Plate   | Bendiı  | ng Elei | ment, F | Rectan | gular F           | Plate |
|-----------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-------------------|-------------------|----------------|--------------|---------|------------------|---------|---------|---------|---------|--------|-------------------|-------|
| RBT             | Leve                                                                                                | els: L.                                    | 3              |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
|                 |                                                                                                     |                                            |                |                   | ]                 | III(b)         | . PRA        | CTI     | CAL P            | ART     |         |         |         |        |                   |       |
| Sl.<br>No.      |                                                                                                     |                                            | Exp            | erim              | ents /            | Prog           | rams /       | Pro     | blems            | (insert | rows    | as ma   | ıny rec | quired | )                 |       |
| 1               | F                                                                                                   | rogra                                      | mmin           | g for             | analys            | is of s        | simply       | supp    | orted p          | olate u | sing N  | Vavier  | 's tech | nnique | e.                |       |
| 2               | F                                                                                                   | rogra                                      | mmin           | g for             | analys            | is of f        | ixed p       | late 1  | using L          | avy's   | techn   | ique.   |         |        |                   |       |
| 3               |                                                                                                     |                                            | mmin<br>Lavy's |                   |                   | is of p        | late w       | ith op  | posite           | ends    | fixed a | and otl | ners si | mply   | suppo             | rted  |
| 4               | _                                                                                                   |                                            |                |                   |                   | is of s        | pheric       | cal sh  | ells us          | ing me  | embra   | ne the  | ory.    |        |                   |       |
| 5               | F                                                                                                   | rogra                                      | mmin           | g for             | analys            | is of c        | ylindı       | rical s | shells u         | sing r  | nembi   | ane th  | neory.  |        |                   |       |
| 6               | F                                                                                                   | rogra                                      | mmin           | g for             | design            | of fo          | lded p       | lates   |                  |         |         |         |         |        |                   |       |
| 7               | F                                                                                                   | Programming for design of spherical domes  |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| 8               | F                                                                                                   | rogra                                      | mmin           | g for             | design            | of hy          | perbo        | lic pa  | rabolo           | id roo  | fs      |         |         |        |                   |       |
| 9               | F                                                                                                   | Programming for FE analysis of thin plates |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| 10              | Programming for FE analysis of thick plates                                                         |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
|                 | IV. COURSE OUTCOMES                                                                                 |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| CO              | CO1 Analysis of plates using closed form solution techniques                                        |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| CO2             | <b>'</b> .                                                                                          | Explai<br>nalys                            |                | classi            | ficatio           | n of c         | urved        | surfa   | aces an          | d exp   | lain th | e mer   | nbran   | e theo | ry for            | the   |
| CO3             | _                                                                                                   |                                            |                | ell pro           | blems             | for a          | xisym        | metri   | ic bend          | ing     |         |         |         |        |                   |       |
| CO <sup>2</sup> | ı I                                                                                                 | Design                                     | ı folde        | ed pla            | tes and           | l shell        | S            |         |                  |         |         |         |         |        |                   |       |
| COS             | 5 N                                                                                                 | /lake                                      | use of         | FE a <sub>l</sub> | proac             | h for          | the an       | alysis  | s of thi         | n and   | thick 1 | plates  |         |        |                   |       |
|                 |                                                                                                     |                                            |                | V. C              | O-PO              | PSO            | MAP          | PIN(    | G (marl          | к H=3   | ; M=2   | ; L=1   | )       |        |                   |       |
| PO/PSO<br>CO1   | 3                                                                                                   | 2                                          | 3              | 4 2               | 5<br>3            | 6              | 7            | 8       | 9                | 10      | 11      | 12      | S1<br>3 | S2     | S3                | S4    |
| CO2             | 3                                                                                                   | 3                                          |                | 2                 | 3                 |                |              |         |                  |         |         | 2       | 3       |        |                   |       |
| CO3<br>CO4      | 3                                                                                                   | 3                                          |                | 2                 | 3                 |                |              |         |                  |         |         | 2       | 3       |        |                   |       |
| CO5             | 3                                                                                                   |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| <u>C</u> -      | 1 D                                                                                                 | 1 P                                        | - C- A         |                   |                   |                |              | Deta    | ails (C          | E & S   | SEE)    |         |         |        |                   |       |
|                 | eral Rules: Refer Annexure section 2<br>tinuous Internal Evaluation (CIE): Refer Annexure section 2 |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
|                 |                                                                                                     |                                            |                |                   | ,                 |                |              |         |                  |         |         |         |         |        |                   |       |
|                 | emester End Examination (SEE): Refer Annexure section 2  VII. Learning Resources                    |                                            |                |                   |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| VI(a):          | Ref                                                                                                 | erenc                                      | e Boo          | ks:               |                   |                |              |         |                  |         |         |         |         |        |                   |       |
| Sl.<br>No.      | Titl                                                                                                | e of tl                                    | he Bo          | ok   I            | Name              | of the         | auth         | or      | Ed               | lition  | and Y   | 'ear    |         |        | ne of t<br>blishe |       |
| 1               |                                                                                                     | ory of<br>Shells                           | Plates         | 3                 |                   | shenl<br>Krieg | ko and<br>er |         |                  | 19      | )59     |         |         |        | iraw-I            |       |

| 2 | Theory of Plates                                                            | Chandrashekara K                                      | 2000    | University Press       |
|---|-----------------------------------------------------------------------------|-------------------------------------------------------|---------|------------------------|
| 3 | Concepts and<br>Applications of<br>Finite Element<br>Analysis               | Robert D Cook,<br>Malkas, D. S. and<br>Plesha., M. E. | 3, 2007 | John Wiley and<br>Sons |
| 4 | Theory and<br>analysis of plates -<br>Classical and<br>numerical<br>methods | Szilard. R                                            | 1974    | Prentice Hall,         |
| 5 | Stress in Plates and shell                                                  | Ugural A C                                            | 1999    | McGraw-H ill           |

## VI(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/105/103/105103209/https://onlinecourses.nptel.ac.in/noc23 ce103/preview

## VII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## 



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M.Tech Computer Aided Design of Structures

| Semester:     | II                                                                      | Course Type: |        | PCC     |              |     |  |  |  |  |  |
|---------------|-------------------------------------------------------------------------|--------------|--------|---------|--------------|-----|--|--|--|--|--|
| Course Title: | Course Title: Structural Stability Analysis – Classical and FE Approach |              |        |         |              |     |  |  |  |  |  |
| Course Code   | Course Code: 23CCST22 Credits:                                          |              |        |         |              |     |  |  |  |  |  |
| Teaching Ho   | urs/We                                                                  | ek (L:T:P:O) |        | 3:0:0:2 | Total Hours: | 40  |  |  |  |  |  |
| CIE Marks:    | 50                                                                      | 0 SEE Mar    | ks:    | 50      | Total Marks: | 100 |  |  |  |  |  |
| SEE Type      | 2:                                                                      |              | Γheory | ,       | Exam Hours:  | 3   |  |  |  |  |  |
|               | I Course Objectives:                                                    |              |        |         |              |     |  |  |  |  |  |

#### Course Objectives:

#### This course will enable students to

- 1. Learn the concepts of stability of structures
- Analyse various structural elements for their stability.
- Compute buckling loads of columns; elastic buckling of frames and Plates.

#### **II. Teaching-Learning Process (General Instructions):**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

**Module-1:** 8 Hrs

Beam column: Differential equation. Beam column subjected to (i) lateral concentrated load, (ii) several concentrated loads, (iii) continuous lateral load. Application of trigonometric series. Euler's formulation using fourth order differential equation for pinned-pinned, fixed-fixed, fixed-free and fixed-pinned columns.

#### **Pre-requisites (Self Learning)**

2. Strength of Materials

**RBT Levels: L1, L2** 

**Module-2:** 8 Hrs

Buckling of frames and continuous beams. Elastic Energy method: Approximate calculation of critical loads for a cantilever, Exact critical load for hinged-hinged column using energy approach. Buckling of bar on elastic foundation, Buckling of cantilever column under distributed loads. Determination of critical loads by successive approximation, Bars with varying cross section, Effect of shear force on critical load. Columns subjected to pulsating forces.

#### **Pre-requisites**

2. Strength of Materials

RBT Levels: K1, K2

Module-3: 8 Hrs

Stability analysis by finite element approach: Derivation of shape functions for a two noded Bernoulli-Euler beam element (lateral and translational DOF) -element stiffness and Element geometric stiffness matrices -Assembled stiffness and geometric stiffness matrices for a discretised column with different boundary conditions - Evaluation of critical loads for a discretised (two elements) column (both ends built-in).

Algorithm to generate geometric stiffness matrix for four noded and eight noded isoparametric plate elements, Buckling of pin jointed frames (maximum of two active DOF)-symmetrical single bay Portal frame.

## **Pre-requisites**

- 2. Matrix method of Analysis
- 3. Finite Element Method

RBT Levels: L2, L3, L4

Module-4: 8 Hrs

Lateral buckling of beams: Differential equation –pure bending – cantilever beam with tip load – simply supported beam of I section subjected to central concentrated load. Pure Torsion of thin – walled bars of open cross section. Non – uniform Torsion of thin – walled bars of open cross section

#### **Pre-requisites**

2. Strength of Materials

RBT Levels: L1, L2, L3

Module-5: 8 Hrs

Expression for strain energy in plate bending with in plate forces (linear and non – linear): Buckling of simply supported rectangular plate—uniaxial load and biaxial load. Buckling of uniformly compressed rectangular plate simply supported along two opposite sides perpendicular to the direction of compression and having various edge condition along the other two sides.

#### **Pre-requisites**

3. Strength of Materials.

#### RBT Levels: L1, L2, L3

#### IV. COURSE OUTCOMES

On completion of this course, students will be able to:

- **CO1** Formulate differential equations for beam column elements with various combinations of loads and end conditions.
- **CO2** Analyse buckling of frames and continuous beams.
- **CO3** | Carry out stability analysis of structures using Finite Element Method.
- **CO4** Analyse buckling of beams and torsion in beams.
- **CO5** Apply strain energy method for buckling of plates.

#### V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|------------|----|------------|----|
| CO1    | 2 | 2 |   |   |   |   |   |   |   |    | 1  |    |            |    |            |    |
| CO2    | 3 | 3 | 1 | 1 |   |   |   |   |   | 2  | 2  |    |            |    |            |    |
| CO3    | 3 | 2 | 1 | 1 |   |   |   |   |   | 2  | 2  |    |            |    |            |    |
| CO4    | 3 | 3 | 1 | 1 |   |   |   |   |   | 2  | 2  |    |            |    |            |    |
| CO5    | 3 | 2 | 1 | 1 |   |   |   |   |   | 2  | 2  |    |            |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

VI(a): Textbooks: (Insert or delete rows as per requirement)

| Sl.<br>No. | Title of the Book                                 | Name of the author                 | Edition and Year | Name of the publisher       |
|------------|---------------------------------------------------|------------------------------------|------------------|-----------------------------|
| 1          | Theory of elasticity Stability                    | Timoshenko and<br>Gere J           | II Edition       | McGraw Hill<br>Book Company |
| 2          | Fundamentals of<br>Structural<br>Stability        | Simitses, G.J. and<br>Hodges, D.H. | 2006             | Butterworth & Heinemann     |
| 3          | Stability Analysis<br>and Design of<br>Structures | Gambhir, M.L                       | 2009             | Springer                    |

**VI(b): Reference Books:** (Insert or delete rows as per requirement)

| 1 | Advanced<br>Mechanics of<br>Solids      | Srinath, L.S.   | 2017 | Tata McGraw-Hill<br>Publishing Co |
|---|-----------------------------------------|-----------------|------|-----------------------------------|
| 2 | Computational<br>Structural<br>Mechanic | Rajashekaran. S | 2001 | Prentice-Hall                     |

## VI(c): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/105/105/105105217/

https://onlinecourses.nptel.ac.in/noc22\_ce91/preview

http://www.infocobuild.com/education/audio-video-courses/architectural-and-civil-

engineering/FEM-for-StructuralDynamic-IISc-Bangalore/lecture-02.html

## VII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

|                     |                  |         | M. 1e       | cn. In   | CAD Structures       |                       |                    |  |
|---------------------|------------------|---------|-------------|----------|----------------------|-----------------------|--------------------|--|
| Semester:           | II               | Cou     | rse Type:   | PEC      |                      |                       |                    |  |
| Course Title        | : ADV            | ANCI    | ED DESIG    | N OF     | STEEL STRUCTU        | RES                   |                    |  |
| <b>Course Code:</b> |                  | 230     | CCSP211     |          |                      | Credits:              | 03                 |  |
| Teaching Hou        | rs/We            | eek (L  | :T:P:O)     |          | 3:0:0:0              | Total Hours:          | 40                 |  |
| CIE Marks:          | :                | 50      | SEE Marks:  |          | 50                   | 50 Total Marks:       |                    |  |
| SEE Type:           |                  |         | Т           | heory    |                      | Exam Hours:           | 3                  |  |
|                     |                  |         | I.          | ,        | Course Objectives:   |                       |                    |  |
| steel  Beco         | y out to. ome Pr | the des | igns of ste |          | e code provisions fo |                       |                    |  |
|                     |                  | II. Te  | eaching-Le  | earnin   | g Process (General   | <b>Instructions):</b> |                    |  |
| Chalk and talk,     | videos,          | Power   | Point prese | entation | n, animations.       |                       |                    |  |
|                     |                  |         | III         | . CO     | URSE CONTENT         |                       |                    |  |
| Module-1:           |                  |         |             |          |                      |                       | 8 hrs              |  |
| Laterally Unr       | estrai           | ned B   | eams: Late  | eral B   | uckling of Beams, I  | Factors affecting lat | eral stability, IS |  |

Laterally Unrestrained Beams: Lateral Buckling of Beams, Factors affecting lateral stability, IS 800 code provisions, Design Approach. Lateral buckling strength of Cantilever beams, continuous beams, beams with continuous and discrete lateral restraints, Mono-symmetricandnon-uniformbeams—DesignExamples.Conceptsof-ShearCenter, Warping, Uniform and Non-Uniform torsion.

**RBT Levels: L1, L2, L3 L4, L5** 

Module-2: 8 hrs

**Beam- Columns in Frames:** Behaviour of Short and Long Beam - Columns, Effects of Slenderness Ratio and Axial Force on Modes of Failure, Biaxial bending, Strength of Beam Columns, Sway and Non-Sway Frames, Strength and Stability of rigid jointed frames, Effective Length of Columns-, Methods in IS 800 – Examples.

**RBT Levels: L1, L2, L3 L4, L5** 

Module-3: 8 hrs

**Steel Beams with Web Openings:** Shape of the web openings, practical guide lines, and Force distribution and failure patterns, Analysis of beams with perforated thin and thick webs, Design of laterally restrained castellated beams for given sectional properties, Vierendeel girders (design for given analysis results)

**RBT Levels: L1, L2, L3 L4, L5** 

Module-4: 8 hrs

**Cold formed steel sections:** Techniques and properties, Advantages, Typical profiles, Stiffened and unstiffened elements, Local buckling effects, effective section properties, IS 801& 811 code provisions, numerical examples- beam design, column design.

RBT Levels: L1 L2 L3

Module-5: 8 hrs

**Fire resistance:** Fire resistance level, Period of Structural Adequacy, Properties of steel with temperature, Limiting Steel temperature, Protected and unprotected members, Methods of fire protection, Fire resistance ratings- Numerical Examples.

RBT Levels: L1 L2 L3

|         | IV. COURSE OUTCOMES                                                  |  |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1     | Analyse the laterally unrestrained beams as per Codal provisions.    |  |  |  |  |  |  |  |  |
| CO2     | Carry out designs of steel columns and beam-column joints in frames. |  |  |  |  |  |  |  |  |
| CO3     | Design castellated beams for given sectional properties.             |  |  |  |  |  |  |  |  |
| CO4     | Design of beams and columns made up of cold formed steel sections.   |  |  |  |  |  |  |  |  |
| CO5     | Learn different aspects of fire resistance in steel structures.      |  |  |  |  |  |  |  |  |
|         | <b>V. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1)                     |  |  |  |  |  |  |  |  |
| DO (DO) |                                                                      |  |  |  |  |  |  |  |  |

|        | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |   |   |   |   |   |   |   |   |    |    |    |            |    |    |    |
|--------|---------------------------------------|---|---|---|---|---|---|---|---|----|----|----|------------|----|----|----|
| PO/PSO | 1                                     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | S3 | S4 |
| CO1    | 3                                     | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |    |    |
| CO2    | 3                                     | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |    |    |
| CO3    | 3                                     | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |    |    |
| CO4    | 3                                     | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |    |    |
| CO5    | 3                                     | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

## VII. Learning Resources

## VI (a): Reference Books:

| Sl.<br>No. | Title of the Book                          | Name of the author | Edition and Year | Name of the publisher |
|------------|--------------------------------------------|--------------------|------------------|-----------------------|
| 1          | Design of Steel<br>Structures              | N. Subramanian     | 2008             | Oxford, IBH           |
| 2          | Design of Steel<br>Structures              | Duggal, S. K       | 2000.            | Tata McGraw-Hill      |
| 3          | IS 800: 2007, IS 801-<br>2010, IS 811-1987 |                    |                  |                       |
| 4          | BS 5950 Part- 8,<br>SP 6 (5)-1980          |                    |                  |                       |

## VI(b): Web links and Video Lectures (e-Resources):

- <a href="https://www.youtube.com/watch?v=qJV5zdx7NJs">https://www.youtube.com/watch?v=qJV5zdx7NJs</a>
- https://www.youtube.com/watch?v=5eZneS83pBg&list=PLyqSpQzTE6M\_nweVk5N8okOA Vl0BNPUXX
- INSDAG Teaching Resource Chapter 11 to 20: www.steel-insdag.org

## VII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion



## || Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R) BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060



Approved by AICTE, New Delhi. Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                | Semester: II Course Type: PEC |        |        |       |         |              |    |  |  |
|--------------------------|-------------------------------|--------|--------|-------|---------|--------------|----|--|--|
| Course Title:            |                               |        |        |       |         |              |    |  |  |
| Course Code:             |                               | 230    | CSP212 |       |         | Credits:     | 3  |  |  |
| Teaching Hour            | s/We                          | ek (L: | Г:Р:О) |       | 3:0:0:0 | Total Hours: | 40 |  |  |
| CIE Marks: 50 SEE Marks: |                               |        |        |       | 50      | 100          |    |  |  |
| SEE Type:                |                               |        | Tł     | neory |         | Exam Hours:  | 3  |  |  |
|                          | I. Course Objectives:         |        |        |       |         |              |    |  |  |

- The students will be exposed to the Engineering aspects of concrete bridges
- Various loads that act on the bridges as per IRC
- 3. Analysis for the maximum BM and SF at critical section using load distributing theories.
- 4. Design of various components using limit state method with reinforcement details

## **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

**Module-1:** 8hrs

Introduction & Design of Slab Culvert: Bridge Engineering and its development in past, Ideal site selection for Bridges, Bridge classifications, Forces acting on Bridge. Analysis for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles. Structural design of slab culvert using limit state method with reinforcement details.

RBT Levels: L1, L2, L3.

**Module-2:** 8hrs

Box Culvert: Introduction to box culvert, advantage of structural continuity, Analysis for maximum BM and SF at critical sections using moment distribution method for various load combinations such as Dead, Surcharge, Soil, Water and Live load as per IRC class A, B, AA tracked and wheeled vehicles. Structural design of box culvert using limit state method with reinforcement details.

RBT Levels: L1, L2, L3.

Module-3: 8hrs

T Beam Bridge: Components of T Beam Bridge, Load transfer mechanism, Proportioning the of Components, Analysis of Slab using Pigeauds Method for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of Slab using limit state method with reinforcement details. Analysis of Cross Girder for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of slab using limit state method with reinforcement details. Analysis of Main Girder using Courbon's Method for maximum BM and SF at critical sections for Dead and Live load as per IRC class A, B, AA tracked and wheeled vehicles and design of Main Girder using limit state method with reinforcement details.

RBT Levels: L1, L2, L3.

Module-4: 8hrs

**PSC Bridge:** Introduction to Pre & Post Tensioning, Proportioning of Components, Analysis & Structural Design of Slab, Analysis of Main Girder Using Courbon's Method for IRC Class AA Tracked vehicle, Calculations of Prestressing Force, Calculations of Stresses, Cable profile, Design of End Block, Detailing of Main Girder

RBT Levels: L1, L2, L3.

Module-5: 8hrs

**Balanced Cantilever Bridge**: Introduction & Proportioning of Components, Analysis of Main Girder Using Courbon's Method for IRC Class AA, Tracked vehicle Design of Simply Supported Portion, Cantilever Portion, Articulation, using limit state method with reinforcement details.

RBT Levels: L1, L2, L3.

| KDIL   | RD1 DCVGS. E1, E2, E3.                                                                                                                                                                                         |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------|--------|-------|--------|---------|--------|--------|-------|-------|---|--|
|        | IV. COURSE OUTCOMES                                                                                                                                                                                            |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
| CO1    | Describe historical growth, select ideal site and bridge, calculate values of design parameters of slab culvert at critical section as per IRC, design and detailing required for the execution of the project |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
| CO2    | Carry out analysis of box culvert as per IRC to obtain the values of design parameters and to design and detail the components following IS code procedure.                                                    |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
| CO3    | bridge                                                                                                                                                                                                         | Demonstrate the use of Pigeauds Method and Courbon's Method in the analysis of T beam bridge as per IRC, design to obtain the safe dimensions various components, optimum reinforcement required following IS code procedure. |        |        |         |        |       |        |         |        |        |       |       |   |  |
| CO4    | Displation obtains to kee                                                                                                                                                                                      | the s                                                                                                                                                                                                                         | afe va | lue of | f prest | ressir | g for | ce, ob | tain th | ne din | nensio | ns of | vario | _ |  |
| CO5    | Analysis a balanced cantilever bridge as per IRC and to obtain the safe values of design parameters and to design and detail the components as per IS code procedure                                           |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
|        | <b>V. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1)                                                                                                                                                               |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
| PO/PSC | 0 1 2 3 4 5 6 7 8 9 10 11 12 S1 S2 S3 S4                                                                                                                                                                       |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |
| CO1    | 3                                                                                                                                                                                                              | 3                                                                                                                                                                                                                             |        |        | 3       |        |       | 3      |         |        |        |       | 3     |   |  |
| CO2    | 3                                                                                                                                                                                                              | 3                                                                                                                                                                                                                             |        |        | 3       |        |       | 3      |         |        |        |       | 3     |   |  |
|        |                                                                                                                                                                                                                |                                                                                                                                                                                                                               |        |        |         |        |       |        |         |        |        |       |       |   |  |

#### VI.Assessment Details (CIE & SEE)

3

3

3

3

3

3

General Rules: Refer Annexure section 1

3

3

Continuous Internal Evaluation (CIE): Refer Annexure section 1

3

3

3

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

3

3

CO3

CO4

CO<sub>5</sub>

#### **Reference Books:**

| Sl.<br>No. | Title of the Book    | Name of the author  | Edition and Year | Name of the publisher |
|------------|----------------------|---------------------|------------------|-----------------------|
|            | Essentials of Bridge |                     |                  | Oxford & IBH          |
| 1          | Engineering          | Dr D Johnson Victor | 2019             | Publishing Co         |
|            |                      |                     |                  | New Delhi             |

| 2 | Design of Bridges                             | Dr N Krishna Raju | 2019 | Oxford & IBH<br>Publishing Co New<br>Delhi |
|---|-----------------------------------------------|-------------------|------|--------------------------------------------|
| 3 | Principles and Practice of Bridge Engineering | S P Bindra        | 2012 | Dhanpat Rai & Sons<br>New Delhi            |

#### VII(c): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=RB2k5hSYO3U&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28 https://www.youtube.com/watch?v=5k8vdDSK6jU&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28&index=2

 $\frac{https://www.youtube.com/watch?v=pWecDpoJd9E\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0e}{GNb28\&index=3}$ 

 $\underline{https://www.youtube.com/watch?v=U4a0q4hYUWw\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28\&index=4}$ 

 $\underline{https://www.youtube.com/watch?v=rAH6eP1G4N0\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28\&index=5}$ 

 $\underline{https://www.youtube.com/watch?v=zIfrR2J154w\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28\&index=7}$ 

https://www.youtube.com/watch?v=SCWNDk2Sfk0&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28&index=8

#### VIII : Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities Group Discussion Site visit



### 



Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi

Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                               | II                                | Cour   | rse Type: | PEC   |         |              |      |  |  |  |  |
|---------------------------------------------------------|-----------------------------------|--------|-----------|-------|---------|--------------|------|--|--|--|--|
| Course Title: Advanced Design of RC Structural Elements |                                   |        |           |       |         |              |      |  |  |  |  |
| <b>Course Code</b>                                      | Course Code: 23CCSP213 Credits: 3 |        |           |       |         |              |      |  |  |  |  |
| Teaching Ho                                             | urs/We                            | ek (L: | T:P:O)    |       | 3:0:2:0 | Total Hours: | 60   |  |  |  |  |
| CIE Marks:                                              | 5                                 | 50     | SEE Ma    | rks:  | 50      | Total Marks: | 100  |  |  |  |  |
| SEE Type:                                               |                                   |        | Т         | heory |         | Exam Hours:  | 3hrs |  |  |  |  |

#### I. Course Objectives:

This course will enable students to analyse the behaviour of elements subjected to shear and torsion. And concept of redistribution of moments in design.

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

| Module-1: |  | 3 ł | ars |
|-----------|--|-----|-----|
|           |  |     |     |

#### **Introduction:**

Behaviour of RC Beams in Shear and Torsion: Modes of Cracking, Shear Transfer Mechanisms, Shear Failure Modes, Critical Sections for Shear Design , Influence of Axial Force on Design Shear Strength, Shear Resistance of Web Reinforcement, Compression Field Theory, Strut-and-Tie Model. Equilibrium Torsion and Compatibility Torsion, Design Strength in Torsion, Design Torsional Strength with Torsional Reinforcement-Space Truss Analogy and Skew Bending Theory- Numerical examples

**Lab Experiment**: Excel programming to compute Concrete Mix Design, Excel programming to compute singly and doubly reinforced beam

**RBT Levels: L1 L2 L3** 

Module-2: 8 hrs

Redistribution of Moments in RC Beams: Conditions for Moment Redistribution – Final shape of redistributed bending moment diagram. Advantages and disadvantages of Moment redistribution – Modification of clear distance between bars in beams (for limiting crack width) with redistribution, Moment – curvature Relations of Reinforced Concrete sections. Moment redistribution for a two-span continuous beam. Curtailment of tension Reinforcement – code procedure

Lab Experiment: Excel programming to compute continuous beam

RBT Levels: L1 L2 L3

Module-3: 8 hrs

Design of Reinforced Concrete Deep Beams: Introduction, definition, Types of deep beams, Minimum thickness - Steps for designing Deep beams as per IS 456 - Detailing of Deep beams. Design examples

**Lab Experiment**: Excel programming to compute Deep beams

**RBT Levels: L1 L2 L3** 

Module-4: 8 hrs

Behaviour and Analysis of Compression Members: Effective Length Ratios of Columns in Frames, Code Charts – Numerical Examples, Short Columns - Modes of Failure in eccentric Compression, Axial Load, Moment Interaction equation, Interaction surface for a biaxial loaded column, concept of equilibrium approach and application to nonrectangular columns. Slender Column: Braced and Unbraced, Design examples

**Lab Experiment**: Excel programming to compute Short columns, Excel programming to compute slender column

**RBT Levels: L1 L2 L3** 

Module-5: 8 hrs

Flat Slab Design: Behaviour of Slab supported on Stiff, Flexible and no beams, Equivalent Frame Concept,, Proportioning of Slab Thickness, Drop Panel and Column Head, Transfer of Shear from Slab to column, Direct Design Method, Equivalent Frame Method – Design Examples. FE analysis and design of Slab Panels based on Wood- Armer equations

**Lab Experiment**: Excel programming to compute simple Flat Slab

**RBT Levels: L1 L2 L3** 

| KD1 L  | RD1 Levels. L1 L2 L3                             |                                    |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
|--------|--------------------------------------------------|------------------------------------|---------|--------|--------|--------|---------|--------|----------|-------|-----|----|------------|----|------------|----|
|        | IV. COURSE OUTCOMES                              |                                    |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
| CO1    | Analy                                            | Analyse the behaviour of RC beams. |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
| CO2    | Apply                                            | redis                              | tributi | ion of | mom    | ents i | n the a | analys | sis of l | RC be | ams |    |            |    |            |    |
| CO3    | Anal                                             | yse an                             | d desi  | ign Ro | C deep | p bear | ns      |        |          |       |     |    |            |    |            |    |
| CO4    | Desig                                            | gn con                             | npress  | sion m | nembe  | ers.   |         |        |          |       |     |    |            |    |            |    |
| CO5    | Desig                                            | gn flat                            | slabs   |        |        |        |         |        |          |       |     |    |            |    |            |    |
|        | <b>V. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1) |                                    |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
| PO/PSC | 1                                                | 2                                  | 3       | 4      | 5      | 6      | 7       | 8      | 9        | 10    | 11  | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1    | 2                                                | 2                                  | 2       |        |        |        | 2       | 3      |          |       |     | 1  | 2          |    |            |    |
| CO2    | 2                                                | 2                                  | 2       |        |        |        | 2       | 3      |          |       |     | 1  | 2          |    |            |    |
| CO3    | 2 2 2 3 1 3 1 2                                  |                                    |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
| CO4    | 2                                                | 2 2 2 1 3 1 2                      |         |        |        |        |         |        |          |       |     |    |            |    |            |    |
| CO5    | 2                                                | 2                                  | 2       |        |        |        |         | 3      |          |       |     | 1  |            |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII (a): Reference Books:

| 1 | Krishna Raju               | Advanced R.C. Design                        | 1986 | CBS Publishers and Distributors   |
|---|----------------------------|---------------------------------------------|------|-----------------------------------|
| 2 | S. Pillai, Devdas<br>Menon | Reinforced Concrete Design                  | 1999 | Tata McGraw-<br>Hill, 3rd Edition |
| 3 | Varghese. P.C              | Advanced Reinforced Concrete design         | 2007 | Prentice, Hall of India           |
| 4 | Gambhir M. L               | Design of Reinforced<br>Concrete Structures | 2008 | , PHI Pvt. Ltd.<br>New Delhi      |

#### VII(b): Web links and Video Lectures (e-Resources):

https://onlinecourses.nptel.ac.in/noc23 ce109/preview

https://onlinecourses.nptel.ac.in/noc22 ce65/preview

https://archive.nptel.ac.in/courses/105/105/105105105/

https://www.youtube.com/watch?v=undsd92MM8w

http://www.digimat.in/nptel/courses/video/105105105/L10.html

#### VIII : Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



# Sti Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology CS Helbert Edward City Da Visharand Barbara Bar



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

|                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       |             |        |                                                  |              |                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------|--------------------------------------------------|--------------|--------------------|--|--|--|
| Semester:                                                                                                                                                                                                                                 | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cou     | rse Type:   | PEC    |                                                  |              |                    |  |  |  |
| Course Title                                                                                                                                                                                                                              | : Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n of Of | ffshore Str | ucture | s                                                |              |                    |  |  |  |
| Course Code                                                                                                                                                                                                                               | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230     | CCSP214     |        |                                                  | Credits:     | 3                  |  |  |  |
| Teaching Ho                                                                                                                                                                                                                               | ours/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eek (L  | :T:P:O)     |        | 3:0:0:0                                          | Total Hours: | 40                 |  |  |  |
| CIE Marks:                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50      | SEE Ma      | rks:   | 50                                               | Total Marks: | 100                |  |  |  |
| SEE Type:                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Т           | heory  |                                                  | Exam Hours:  | 03                 |  |  |  |
| I. Course Objectives:                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |        |                                                  |              |                    |  |  |  |
| To do To do To do Chalk and Chalk and Wind Loads; Moments; Des Fatigue Load I Concepts of F                                                                                                                                               | <ul> <li>To explain the different types of loads acting on offshore structures</li> <li>To design steel tubular members against static and cyclic loads</li> <li>To design offshore structural elements against Accidental loads</li> <li>II. Teaching-Learning Process:</li> <li>Chalk and talk, videos, Power Point presentation, animations.</li> <li>III. COURSE CONTENT</li> <li>Module-1: Loads on Offshore Structures</li> <li>8 Hrs</li> <li>Wind Loads; Wave and Current Loads; Calculation based on Maximum base Shear and Overturning Moments; Design Wave heights and Spectral Definition; Hydrodynamic Coefficients and Marine growth; Fatigue Load Definition and Joint Probability distribution; Seismic Loads.</li> <li>Concepts of Fixed Platform Jacket and Deck:</li> </ul> |         |             |        |                                                  |              |                    |  |  |  |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |        | nt; Launch and Lift jac<br>Pre-service Loads and |              | configurations for |  |  |  |
| RBT Levels                                                                                                                                                                                                                                | s: L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |        |                                                  |              |                    |  |  |  |
| Module-2: St                                                                                                                                                                                                                              | eel Tubı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ular Me | ember Desi  | gn     |                                                  |              | 8 Hrs              |  |  |  |
| Principles of WSD and LRFD; Allowable stresses and Partial Safety Factors; Tubular Members, Slenderness effects; Column Buckling, Design for Hydrostatic pressure; Design for combined axial and bending stresses (API RP 2A guidelines). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |        |                                                  |              |                    |  |  |  |
| RBT Levels: L3                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |        |                                                  |              |                    |  |  |  |
| Module-3: T                                                                                                                                                                                                                               | Module-3: Tubular Joint Design for Static and Cyclic Loads 8 Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |             |        |                                                  |              |                    |  |  |  |
| •                                                                                                                                                                                                                                         | Simple tubular joints, design using allowable loads; stress concentration factors; S-N curves and fatigue damage calculations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |        |                                                  |              |                    |  |  |  |
|                                                                                                                                                                                                                                           | Self-study problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |             |        |                                                  |              |                    |  |  |  |
| RBT Levels                                                                                                                                                                                                                                | RBT Levels: L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |             |        |                                                  |              |                    |  |  |  |

#### **Module-4: Submarine Pipelines and Risers**

8 Hrs

Route selection and Diameter / wall thickness calculations; Pipeline stability, free span calculations; Concrete coated pipelines and pipe-in-pipe insulated pipelines; Design using DNV 81 code.

#### **RBT Levels: L3**

#### Module-5: Design against Accidental Loads (Fire, Blast and Collision)

8 Hrs

Behaviour of steel at elevated temperature; Fire Rating for Hydrocarbon fire; Design of structures for high temperature; Blast Mitigation-Blast walls; Collision of Boats and energy absorption; Platform survival capacity and Plastic design methods.

Self-study problems

#### **RBT Levels: L3**

#### IV. COURSE OUTCOMES

| CO1 | Explain the different types of load on offshore structures. |
|-----|-------------------------------------------------------------|
|-----|-------------------------------------------------------------|

- CO2 Obtain Steel Tubular Member size for the given loading condition
- CO3 Design Tubular Joint for Static and Cyclic Loads
- **CO4** Propose design configuration for Submarine Pipelines and Risers
- CO5 | Analyse and design offshore structural elements against Fire, Blast and Collision

#### V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

| -      |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
| CO1    | 3 |   |   |   |   |   |   | 3 |   |    |    |    | 3  |    |    |    |
| CO2    | 3 | 3 |   |   |   |   |   | 3 |   |    |    |    | 3  |    |    |    |
| CO3    | 3 | 3 |   |   |   |   |   | 3 |   |    |    |    | 3  |    |    |    |
| CO4    | 3 | 3 |   |   |   |   |   | 3 |   |    |    |    | 3  |    |    |    |
| CO5    | 3 | 3 |   |   |   |   |   | 3 |   |    |    |    | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII (a): Reference Books:

| Sl.<br>No. | Title of the Book  | Name of the author  | Edition and Year | Name of the publisher |
|------------|--------------------|---------------------|------------------|-----------------------|
| 1          | Hydrodynamics of   | S. K. Chakrabarti   | 2010             | Springer Verlag       |
|            | Offshore           |                     |                  |                       |
|            | Structures         |                     |                  |                       |
| 2          | Handbook of        | S.K. Chakrabarti    | 2005             | Elseviers             |
|            | Offshore           |                     |                  |                       |
|            | Engineering        |                     |                  |                       |
| 3          | Offshore pipelines | B. Gou, S. Song, J. | 2006             | GPP                   |
|            |                    | Chacko and A.       |                  | Publishers            |
|            |                    | Ghalambor           |                  |                       |
| 4          | Structural         | W. F. Chen and      | 1999             | Elsevier              |
|            | Stability - Theory | E.M.Lui             |                  |                       |
|            | and                |                     |                  |                       |
|            | Implementation     |                     |                  |                       |

#### VII(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/114/106/114106011/ https://archive.nptel.ac.in/courses/114/106/114106035/

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion
- Site visit



### Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:          | II                                    | Cou    | rse Type: | PEC   |         |              |      |  |  |  |  |
|--------------------|---------------------------------------|--------|-----------|-------|---------|--------------|------|--|--|--|--|
| Course Title       | Course Title: STRUCTURAL OPTIMIZATION |        |           |       |         |              |      |  |  |  |  |
| <b>Course Code</b> | Course Code: 23CCSP221 Credits: 3     |        |           |       |         |              |      |  |  |  |  |
| Teaching Ho        | urs/We                                | ek (L: | T:P:O)    |       | 3:0:0:0 | Total Hours: | 40   |  |  |  |  |
| CIE Marks:         |                                       | 50     | SEE Ma    | rks:  | 50      | Total Marks: | 100  |  |  |  |  |
| SEE Type:          |                                       |        | Т         | heory |         | Exam Hours:  | 3hrs |  |  |  |  |

#### I. Course Objectives:

Learn the need and concepts of design optimization.

Implement optimization concepts in structural engineering problems.

Evaluate different methods of optimization.

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

**Introduction to optimization:** Engineering applications of optimization, Formulation of structural optimization problems as programming problems. Optimization Techniques: Classical optimization techniques, single variable optimization, multivariable optimization with no constraints, unconstrained minimization techniques and algorithms constrained optimization solutions by penalty function techniques, Lagrange multipliers techniques and feasibility techniques.

**RBT Levels: L1 L2 L3** 

Module-2: 8 hrs

**Linear Programming:** Introduction, standard form of linear programming, geometry of linear programming problems, solution of a system of linear simultaneous equations, pivotal production of general systems of equations, simplex algorithms, revised simpler methods, duality in linear programming.

RBT Levels: L1 L2 L3

Module-3: 8 hrs

**Non-linear programming:** Introduction, one dimensional minimization methods, elimination methods, Fibonacci method, golden section method, interpolation methods, quadratic and cubic methods, Unconstrained optimization methods, direct search methods, random search methods, descent methods

RBT Levels: L1 L2 L3

Module-4: 8 hrs

Constrained optimization techniques such as direct methods, the complex methods, cutting plane method, exterior penalty function methods for structural engineering problems. Formulation and solution of structural optimization problems by different technique

RBT Levels: L1 L2 L3

Module-5: 8 hrs

**Geometric programming & Dynamic programming:** conversion of NLP as a sequence of LP / geometric programming. Dynamic programming: Dynamic programming conversion of NLP as a sequence of LP / Dynamic programming.

**RBT Levels: L1 L2 L3** 

#### IV. COURSE OUTCOMES

- **CO1** Formulate structural optimization problems.
- CO2 Carry out linear programming by solving a system of linear simultaneous equations.
- CO3 Apply different non-linear programming methods
- **CO4** Apply constrained optimization techniques for structural engineering problems.
- **CO5** Undertake geometric and dynamic programming techniques to structural engg. problems.

#### V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | S3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|------------|----|----|----|
| CO1    | 2 | 2 | 2 |   |   |   |   |   |   |    |    |    | 2          |    |    |    |
| CO2    | 2 | 2 | 2 |   |   |   |   |   |   |    |    |    | 2          |    |    |    |
| CO3    | 2 | 2 | 2 |   |   |   |   |   |   |    |    |    | 2          |    |    |    |
| CO4    | 2 | 2 | 2 |   |   |   |   |   |   |    |    |    | 2          |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

VII (a)Reference Books:

| 1 | Optimum Structural<br>Design                                | Spunt L                       | 1971 | Prentice Hall              |
|---|-------------------------------------------------------------|-------------------------------|------|----------------------------|
| 2 | Optimization – Theory and Practice                          | Rao S. S.                     | 1978 | Wiley Eastern Ltd          |
| 3 | Optimum Structural Design,                                  | Uri Kirsch                    | 1981 | McGraw Hill,<br>New York   |
| 4 | Operation Research                                          | Bronson R. and, Govind sami N | 2017 | Schaum's Outline<br>Series |
| 5 | Structural optimization using sequential linear programming | Bhavikatti S. S               | 2003 | Vikas publishing           |

#### VII(b): Web links and Video Lectures (e-Resources):

 $\frac{https://www.youtube.com/watch?v=wEdZLKMMZ8o\&list=PLwdnzIV3ogoXKKb9nABDWYltTDgi37IYD}{https://www.youtube.com/watch?v=GMTvoKRfxQw&list=PLGbjwqYC00hsy6XGalOBAphm2tdeLbgK0}{https://www.youtube.com/watch?v=fszNBvdfKrY}$ 

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 



### Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                             | II                                | Cou | rse Type: | PEC   |         |              |     |  |  |  |  |
|---------------------------------------|-----------------------------------|-----|-----------|-------|---------|--------------|-----|--|--|--|--|
| Course Title: Mechanics of Composites |                                   |     |           |       |         |              |     |  |  |  |  |
| Course Code                           | Course Code: 23CCSP222 Credits: 3 |     |           |       |         |              |     |  |  |  |  |
| Teaching Hours/Week (L:T:P:O)         |                                   |     |           |       | 3:0:0:0 | Total Hours: | 40  |  |  |  |  |
| CIE Marks:                            | 5                                 | 0   | SEE Ma    | rks:  | 50      | Total Marks: | 100 |  |  |  |  |
| SEE Type:                             |                                   |     | Т         | heory |         | Exam Hours:  | 03  |  |  |  |  |

#### I. Course Objectives:

- To compute the mechanical properties of fiber reinforced composites by knowing the properties of constituent materials.
- To analyse and design composite laminates with different configuration.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

#### **Module-1: Introduction to Composite Materials**

8 Hrs

Introduction to composite materials: Definition, classification and characteristics of composite Materials – fibrous composites, laminated composites, particulate composites. Constituents of composite materials: Reinforcements, Matrix, Coupling agents, coatings & fillers.

Reinforcements: Introduction, Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Whiskers, Other Non-oxide Reinforcements, Comparison of Fibers

Matrix Materials: Polymers, Metals and Ceramic Matrix Materials.

#### **RBT Levels: L2**

#### Module-2: Macromechanical Analysis of a Lamina

8 Hrs

Hooke's Law for Different Types of Materials: Anisotropic Material, Monoclinic Material, Orthotropic Material (Orthogonally Anisotropic)/Specially Orthotropic, Transversely Isotropic Material, Isotropic Material, Hooke's Law for a Two-Dimensional Unidirectional Lamina: Plane Stress Assumption, Reduction of Hooke's Law in Three Dimensions to Two Dimensions, Relationship of Compliance and Stiffness Matrix to Engineering Elastic Constants of a Lamina, Hooke's Law for a Two-Dimensional Angle Lamina, Engineering Constants of an Angle Lamina, Invariant Form of Stiffness and Compliance Matrices for an Angle Lamina,

#### **RBT Levels: L3**

#### Module-3: Micromechanical Analysis of a Lamina

8 Hrs

Volume and Mass Fractions, Density, and Void Content, Evaluation of the Four Elastic Moduli, Strength of Materials Approach, Semi-Empirical Models, Elasticity Approach, Ultimate Strengths of a Unidirectional Lamina, Longitudinal Tensile Strength, Longitudinal Compressive Strength, Transverse

Tensile Strength, Transverse Compressive Strength, In-Plane Shear Strength, Coefficients of Thermal Expansion, Coefficients of Moisture Expansion. Numerical examples

Self-study problems

#### **RBT Levels: L3**

#### **Module-4: Macromechanical Analysis of Laminates**

8 Hrs

Macromechanical Analysis of Laminates, Laminate Code, Stress-Strain Relations for a Laminate: One-Dimensional Isotropic Beam Stress-Strain Relation, Strain-Displacement Equations, Strain and Stress in a Laminate, Force and Moment Resultants Related to Midplane Strains and Curvatures, In-Plane and Flexural Modulus of a Laminate, In-Plane Engineering Constants of a Laminate, Flexural Engineering Constants of a Laminate, Hygrothermal Effects in a Laminate, Hygrothermal Stresses and Strains, Coefficients of Thermal and Moisture Expansion of Laminates, Warpage of Laminates. Numerical examples.

#### **RBT Levels: L3**

#### Module-5: Failure, Analysis, and Design of Laminates

8 Hrs

Special Cases of Laminates: Symmetric Laminates, Cross-Ply Laminates, Angle Ply Laminates, Antisymmetric Laminates, Balanced Laminate, Quasi-Isotropic Laminates. Failure Criterion for a Laminate.

Design of a Laminated Composite, Design of a Laminated Composite, Sandwich Composites: Long-Term Environmental Effects, Interlaminar Stresses, Impact Resistance, Fracture Resistance, Fatigue Resistance.

#### **RBT Levels: L3**

#### IV. COURSE OUTCOMES

| CO1 | Explain the classification of composite materials             |
|-----|---------------------------------------------------------------|
| CO2 | Compute the mechanical properties of composite lamina         |
| CO3 | Obtain the strength of an arbitrarily oriented lamina.        |
| CO4 | Calculate the stresses and strains in a laminate              |
| CO5 | Analyse and design laminates configuration for the given load |
|     |                                                               |

#### **V. CO-PO-PSO MAPPING** (mark H=3; M=2; L=1)

| PO/PS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| O     |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| CO1   | 3 |   |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO2   | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO3   | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO4   | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO5   | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII(a): Reference Books:

| Sl. | Title of the Book | Name of the author | Edition and Year | Name of the |
|-----|-------------------|--------------------|------------------|-------------|
| No. | Title of the book | Name of the author | Euluon and Tear  | publisher   |

| 1 | Mechanics of composite materials                         | Robert M. Jones               | 2, 1999 | Taylor & Francis            |
|---|----------------------------------------------------------|-------------------------------|---------|-----------------------------|
| 2 | Mechanics of<br>Composite<br>Materials                   | Autar K. Kaw                  | 2, 2006 | CRC Press                   |
| 3 | Engineering Mechanics of Composite Materials             | Isaac M. Daniel, Ori<br>Ishai | 3, 2007 | Oxford University<br>Press  |
| 4 | Mechanics of<br>Composite<br>Materials and<br>Structures | Madhujit<br>Mukhopadhyay      | 2, 2005 | Universities<br>Press,India |
| 5 | Composite Science and Engineering                        | `K. K. Chawla                 | 3, 2012 | Springer Verlag             |

#### VII(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/112/103/112103308/#

https://archive.nptel.ac.in/courses/112/104/112104229/

https://onlinecourses.nptel.ac.in/noc22 me40/preview

https://onlinecourses.nptel.ac.in/noc23 me139/preview

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion
- Site visit



# | Jai Sri Gurudev | | | Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology (S. Helbert Edward City De Visherundhan Perd Versia Perd Versia (R)



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                  | II                                | Cor | urse Type: | PEC   |    |              |     |  |  |  |  |
|--------------------------------------------|-----------------------------------|-----|------------|-------|----|--------------|-----|--|--|--|--|
| Course Title: Structural Health Monitoring |                                   |     |            |       |    |              |     |  |  |  |  |
| Course Code                                | Course Code: 23CCSP223 Credits: 3 |     |            |       |    |              |     |  |  |  |  |
| Teaching Ho                                | Teaching Hours/Week (L:T:P:O)     |     |            |       |    | Total Hours: | 40  |  |  |  |  |
| CIE Marks: 50 SEE Marks:                   |                                   |     |            | rks:  | 50 | Total Marks: | 100 |  |  |  |  |
| SEE Type:                                  |                                   |     | Т          | heory |    | Exam Hours:  | 03  |  |  |  |  |

#### I. Course Objectives:

- Study fundamentals of structural health monitoring.
- Study various vibration-based techniques for structural health monitoring.
- Use fibre-optic methods for monitoring of structural health.
- Adopt electrical resistance and Capacitive Methods for structural health monitoring.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

#### **Module-1: Introduction to Structural Health Monitoring**

8 Hrs

Introduction to Structural Health Monitoring Definition of structural health monitoring (SHM), Motivation for SHM, SHM as a way of making materials and structures smart, SHM and biomimetics, Process and preusage monitoring as a part of SHM, SHM as a part of system management, Passive and active SHM, NDE, SHM and NDECS, Variety and multi disciplinarity: the most remarkable characters of SHM, Birth of the SHM Community.

**RBT Levels: L2** 

#### Module-2: Vibration-Based Techniques for Structural Health Monitoring

8 Hrs

Basic vibration concepts for SHM, Mathematical description of structural systems with damage, Linking experimental and analytical data, Damage localization and quantification, Solution of the equation system, Neural network approach to SHM, A simulation example, Time-domain damage detection methods for linear systems, Damage identification in non-linear systems, Applications.

**RBT Levels: L2** 

#### **Module-3: Fiber-Optic Sensors**

8 Hrs

Classification of fiber-optic sensors, The fiber Bragg grating as a strain and temperature sensor, Structures with embedded fiber Bragg gratings, Fiber Bragg gratings as damage sensors for composites, Examples of applications in aeronautics and civil engineering

**RBT Levels: L2** 

#### **Module-4: Structural Health Monitoring with Piezoelectric Sensors**

8 Hrs

The use of embedded sensors as acoustic emission (AE) detectors, State-the-art and main trends in piezoelectric transducer-based acousto-ultrasonic SHM research, Electromechanical impedance,

#### **RBT Levels: L2**

#### **Module-5: Electrical Resistance and Capacitive Methods**

8 Hrs

Composite damage, Electrical resistance of unloaded composite, Composite strain and damage monitoring by electrical resistance, Damage localization.

Capacitance probe for cover concrete, Application for external post-tensioned cables

#### **RBT Levels: L2**

#### IV. COURSE OUTCOMES

| Emphasize the importance of structural health monitoring as part of system management                               |
|---------------------------------------------------------------------------------------------------------------------|
| Adopt vibration-based techniques for health monitoring of a few structural elements and components                  |
| Use fibre-optic and other types of sensors for estimating damage in a structural element                            |
| Characterise the defect or damage in a structural element using piezo-electric sensors or acoustic emission methods |
| Apply general principles of structural health monitoring using Electrical Resistance and Capacitive Methods         |
|                                                                                                                     |

#### V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)

| PO/PSO | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| CO1    | 3 |   |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO2    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO3    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO4    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |
| CO5    | 3 | 3 |   |   |   |   |   |   |   |    |    |    | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### **VI(a): Reference Books:**

| Sl.<br>No. | Title of the Book                                                    | Name of the author                                                                              | Edition and Year | Name of the publisher       |
|------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------|-----------------------------|
| 1          | Structural Health<br>Monitoring                                      | Daniel Balageas,<br>Claus-Peter Fritzen,                                                        | 1, 2006          | Wiley ISTE                  |
|            |                                                                      | Alfredo Güemes                                                                                  |                  |                             |
| 2          | Continuum<br>Mechanics<br>Fundamentals                               | Health monitoring of<br>structural materials<br>and components-<br>Methods with<br>Applications | 1, 2007          | John Wiley and<br>Sons      |
| 3          | Structural Health<br>Monitoring and<br>Intelligent<br>Infrastructure | J. P. Ou, H. Li and Z.<br>D. Duan                                                               | 1, 2006          | Taylor and<br>Francis Group |

| 4 | Structural Health  | Victor Giurglutiu | 1, 2007 | Gandhi          |
|---|--------------------|-------------------|---------|-----------------|
|   | Monitoring with    |                   |         | and Thomson     |
|   | Wafer Active       |                   |         |                 |
|   | sensors, smart     |                   |         |                 |
|   | materials and      |                   |         |                 |
|   | structures         |                   |         |                 |
| 5 | Structural Health  | Fu Kuo Chang      | 1, 1997 | CRC Press, Inc. |
|   | Monitoring:        |                   |         |                 |
|   | current status and |                   |         |                 |
|   | perspective        |                   |         |                 |

#### VI(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/114/106/114106046/

https://archive.nptel.ac.in/noc/courses/noc18/SEM2/noc18-oe05/

https://nptel.ac.in/courses/112104160

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion
- Site visit



### Sti Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

### Civil Engineering M.Tech Structural Engineering

| Semester:          | II                                               | Cour   | se Type: | PEC   |         |              |      |  |  |  |  |  |
|--------------------|--------------------------------------------------|--------|----------|-------|---------|--------------|------|--|--|--|--|--|
| Course Title       | Course Title: RELIABILITY ANALYSIS OF STRUCTURES |        |          |       |         |              |      |  |  |  |  |  |
| <b>Course Code</b> | :                                                | 230    | CCSP224  |       |         | Credits:     | 3    |  |  |  |  |  |
| Teaching Ho        | urs/We                                           | ek (L: | T:P:O)   |       | 3:0:0:0 | Total Hours: | 40   |  |  |  |  |  |
| CIE Marks:         | 4                                                | 50     | SEE Ma   | rks:  | 50      | Total Marks: | 100  |  |  |  |  |  |
| SEE Type:          |                                                  |        | Т        | heory |         | Exam Hours:  | 3hrs |  |  |  |  |  |

#### I. Course Objectives:

To impart the concept knowledge on data analysis and probability in the context of structural engineering. To demonstrate uncertainty in structural engineering with respect to randomness of variables and knowledge of probability distributions. To demonstrate principles of structural reliability in order to assess safety due to randomness of variables. To perform computations of structural reliability using various methods at component and system level.

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

**Preliminary Data Analysis:** Graphical representation- Histogram, frequency polygon, Measures of central tendency- grouped and ungrouped data, measures of dispersion, measures of asymmetry. Curve fitting and Correlation: Fitting a straight line, curve of the form y = abx, and parabola, Coefficient of correlation.

RBT Levels: L1 L2 L3

Module-2: 8 hrs

**Probability Concepts:** Random Events-Sample space and events, Venn diagram and event space, Measures of probability interpretation, probability axioms, addition rule, multiplication rule, conditional probability, probability tree diagram, statistical independence, total probability theorem and Baye's theorem.

**RBT Levels: L1 L2 L3** 

Module-3: 8 hrs

**Random variables:** Probability mass function, probability density function, Mathematical expectation, Chebyshev's theorem. Probability distributions: Discrete distributions- Binomial and Poison distributions, Continuous distributions- Normal, Log normal distributions.

RBT Levels: L1 L2 L3

Module-4: 8 hrs

**Reliability Analysis:** Measures of reliability-factor of safety, safety margin, reliability index, performance function and limiting state. Reliability Methods-First Order Second Moment Method (FOSM), Point Estimate Method (PEM), and Advanced First Order Second Moment Method (Hasofer-Lind's method).

RBT Levels: L1 L2 L3

Module-5: 8 hrs

**Simulation Techniques**: Monte Carlo simulation- Statistical experiments, Confidence limits, sample size and accuracy, Generation of random numbers- random numbers with standard uniform distribution, continuous random variables (normal and lognormal), discrete random variables. System reliability: series, parallel and combined systems.

RBT Levels: L1 L2 L3

| 112121 |                                                                                       |                                                                                       |        |        |         |        |         |       |       |         |       |        |            |       |            |    |
|--------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|--------|---------|--------|---------|-------|-------|---------|-------|--------|------------|-------|------------|----|
|        |                                                                                       |                                                                                       |        |        | IV.     | COU    | RSE     | OUT   | COM   | ES      |       |        |            |       |            |    |
| CO1    | Unde                                                                                  | rstand                                                                                | l the  | conce  | epts o  | of sta | tistics | for   | proba | bilisti | c ana | llysis | and        | impor | tance      | of |
| COI    | uncer                                                                                 | uncertainty in structural analysis and design.                                        |        |        |         |        |         |       |       |         |       |        |            |       |            |    |
| CO2    | Apply the theoretical principles of randomness of variables in structural engineering |                                                                                       |        |        |         |        |         |       |       |         |       |        |            |       | ing        |    |
| CO2    | throu                                                                                 | through density functions.                                                            |        |        |         |        |         |       |       |         |       |        |            |       |            |    |
| CO3    | Anal                                                                                  | Analyze components of structure to assess safety using concepts related to structural |        |        |         |        |         |       |       |         |       |        |            |       |            |    |
| CO3    | reliab                                                                                | reliability by various methods                                                        |        |        |         |        |         |       |       |         |       |        |            |       |            |    |
| CO4    | Evalu                                                                                 | iate th                                                                               | e safe | ty rel | iabilit | y inde | ex at s | ystem | level |         |       |        |            |       |            |    |
|        |                                                                                       |                                                                                       |        |        | V. (    | CO-P   | O-PS    | O MA  | APPIN | NG      |       |        |            |       |            |    |
| PO/PSO | 1                                                                                     | 2                                                                                     | 3      | 4      | 5       | 6      | 7       | 8     | 9     | 10      | 11    | 12     | <b>S</b> 1 | S2    | <b>S</b> 3 | S4 |
| CO1    | 2                                                                                     | 2                                                                                     | 2      |        |         |        |         |       |       |         |       |        | 2          |       |            |    |
| CO2    | 2                                                                                     | 2                                                                                     | 2      |        |         |        |         |       |       |         |       |        | 2          |       |            |    |
| CO3    | 2                                                                                     | 2                                                                                     | 2      |        |         |        |         |       |       |         |       |        | 2          |       |            |    |
| CO4    | 2                                                                                     | 2                                                                                     | 2      | ·      |         |        |         |       |       |         |       |        | 2          |       |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII (a) Reference Books:

| 1 | Structural Reliability Analysis and design                                      | Ranganathan R                              | 1999 | Jaico publishing house                              |
|---|---------------------------------------------------------------------------------|--------------------------------------------|------|-----------------------------------------------------|
| 2 | Reliability based<br>Analysis and Design<br>for Civil Engineers                 | Devaraj & Ravindra. R                      | 2017 | I.K. International                                  |
| 3 | Probability concepts<br>in engineering<br>planning and design,<br>Volume –I, II | Ang, A. H. S., and Tang, W. H.             | 1984 | John Wiley and<br>sons, Inc, New<br>York.           |
| 4 | Reliability based design in civil engineering.                                  | Milton, E. Harr                            | 1987 | Mc Graw Hill<br>education Pvt. Ltd                  |
| 5 | Statistics, "Probability<br>and reliability for<br>Civil and                    | Nathabandu, T., Kottegoda, and Renzo Rosso | 1998 | Mc Graw Hill<br>international<br>edition, Singapore |

| Environmental |  |  |
|---------------|--|--|
| Engineers     |  |  |

#### VII(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=uutg8jKrL9w

 $\frac{https://www.youtube.com/watch?v=OwuT0B2Uywc&list=PLFEqFwyPC3WwjTp4KDuannMGGtAUVnfE4https://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLOnJQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HUR34pjrH7hZLpDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HUR34pjrH7hZDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HUR34pjrH7hZDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HUR34pjrH7hZDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HUR34pjrH7hZDhttps://www.youtube.com/watch?v=n-YMzb6xTsA&list=PLFQiDsowogZnvfY3HU$ 

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

- Conduction of technical seminars on recent research activities
- Group Discussion
- Site visit



### || Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R) BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060



Approved by AICTE, New Delhi. Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                     | II   | Cour        | rse Type:  | PCC    | CL                 |              |              |
|-------------------------------|------|-------------|------------|--------|--------------------|--------------|--------------|
| Course Title                  | : Ca | ıd Lab – Fl | E Modellir | ng and | l Analysis         |              |              |
| Course Code                   | 02   |             |            |        |                    |              |              |
| Teaching Hours/Week (L:T:P:O) |      |             |            |        | 1:0:2:0            | Total Hours: | Lab sessions |
| CIE Marks:                    |      | 50          | SEE Ma     | rks:   | 50                 | Total Marks: | 100          |
| SEE Type:                     |      |             | Pr         | actica | 1                  | Exam Hours:  | 03           |
|                               |      |             | T.         |        | Course Objectives: |              |              |

- 1. Use industry standard software in a professional set up.
- 2. Familiarise with the elements of finite element modeling, specification of loads and boundary condition, performing analysis and interpretation of results for final design.
- II. Teaching-Learning Process (General Instructions): Chalk and talk, videos, Power Point presentation, animations

| pros       | Shutton, unmutons                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|
|            | III(b). PRACTICAL PART                                                                                                              |
| Sl.<br>No. | Experiments / Programs / Problems                                                                                                   |
| 1          | FE Analysis of Plane Stress and Plane Strain Problems                                                                               |
| 2          | Flexural Behaviour of Slab Panels with different aspect ratio and boundary conditions                                               |
| 3          | FE Analysis of Slab panel resting on column supports- Drop Panels, Capitals                                                         |
| 4          | FE Analysis of Slab on Grade (Raft), Underpass, Bridge Structures                                                                   |
| 5          | FE Analysis of Framed structures due to Seismic forces using modal superposition method                                             |
| 6          | Program Development for design of structural steel elements, using any programming (Tension member, Compression member and bending) |
|            | III. COURSE OUTCOMES                                                                                                                |
| CO1        | Carry out FE analysis of Plane Stress and Plane Strain Problems                                                                     |
| CO2        | Analyse and interpret Flexural Behaviour of Slab Panels.                                                                            |
| CO3        | Conduct FE analysis of structural elements like slab panels, drop panels and capitals.                                              |
| CO4        | Analyse Slab on Raft, Underpass and Bridge etc using FE method.                                                                     |
| CO5        | Carry out dynamic analysis using mode superposition method                                                                          |
| CO6        | Develop programs for the analysis structural steel elements in tension, compression and bending.                                    |

|       | IV. CO-PO-PSO MAPPING (mark H=3; M=2; L=1) |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
|-------|--------------------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| PO/PS | 1                                          | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | S1 | S2 | S3 | S4 |
| О     |                                            |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| CO1   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    |    |
| CO2   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    |    |
| CO3   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    |    |
| CO4   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    |    |
| CO5   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    | ·  |
| CO6   | 3                                          | 3 |   | 3 | 3 |   |   |   |   |    |    |    | 3  |    |    |    |

#### V. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 3

Continuous Internal Evaluation (CIE): Refer Annexure section 3

Semester End Examination (SEE): Refer Annexure section 3

#### VI. References

- 1.Krishna Raju. N., "Advanced Reinforced Concrete Design", CBS Publishers & Distributors
- 2. Pillai S. U. and Menon D., "Reinforced Concrete Design", Tata McGraw-Hill,3rd Ed, 1999
- 3. Relevant IS Code Books
- 4. Shah.H.J, "Reinforced Concrete", Vol-1 and Vol-2, Charotar, 8th Edition –2009 and 6th Edition –2012 respectively.



### Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### **MTech CAD Structures**

| Semester:          | III                       | Cour   | se Type: | PCC   | 1           |     |            |      |  |  |  |
|--------------------|---------------------------|--------|----------|-------|-------------|-----|------------|------|--|--|--|
| Course Title       | : ADV                     | ANCE   | D STRUC  | CTUR  | AL ANALYSIS |     |            |      |  |  |  |
| <b>Course Code</b> | Course Code: 23CCST31 Cro |        |          |       |             |     |            |      |  |  |  |
| Teaching Ho        | ırs/We                    | ek (L: | T:P:O)   |       | 3:0:0:0     | To  | tal Hours: | 40   |  |  |  |
| <b>CIE Marks:</b>  | 5                         | 50     | SEE Ma   | rks:  | 50          | Tot | tal Marks: | 100  |  |  |  |
| SEE Type:          |                           |        | T        | heory |             | Exa | m Hours:   | 3hrs |  |  |  |

#### I. Course Objectives:

Analysis of curved beams, Beams on elastic foundation, shear centre and unsymmetrical bending and buckling of non-prismatic columns and beam columns.

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

**Curved Beams:** Curved beams, Introduction, assumptions, derivation of Winkler Bach equation, Radius to the neutral surface of simple geometric figures, Limitation, Stress distribution in open curved members such as Hooks and chain links, Stress distribution in closed rings and chain links. Deformations of open and closed rings.

**RBT Levels: L1 L2 L3** 

Module-2: 8 hrs

**Beams on Elastic Foundations:** Governing differential equation for elastic line, Interpretation of constants, Infinite beam with point load, moment & UDL with problems. Semi- infinite beams with point load and moment UDL with problems over fixed and hinged support conditions.

**RBT Levels: L1 L2 L3** 

Module-3: 8 hrs

**Shear Centre:** Concept of shear center in torsion induced bending of beams, expression to the Shear Centre for Symmetrical and Unsymmetrical Sections, Derivation of shear centre for angles, channel, semicircular and built-up sections with numerical problems.

**RBT Levels: L1 L2 L3** 

Module-4: 8 hrs

**Unsymmetrical Bending:** Theory behind unsymmetrical bending, Assumptions, obtaining the stresses in beams, simply supported and cantilever unsymmetrical beams subjected to inclined loading, Deflections of unsymmetrical simply supported and cantilever beams with numerical problems.

**RBT Levels: L1 L2 L3** 

Module-5: 8 hrs

**Buckling of Non Prismatic Columns and Beam-Column:** Principle behind Euler's theory of buckling, Governing differential equation applied to buckling of columns and evaluation of constants for various boundary conditions, Obtaining the characteristic equation for the buckling load of non-prismatic compound columns, Analysis of Beam-column, conceptual theory of magnification stresses and deformations subjected to axial and different types of lateral loads with numerical problems..

RBT Levels: L1 L2 L3

|           |         |                   |         |        | IV.     | COL    | IRSE   | OUT     | COM      | ES     |         |        |       |        |            |      |
|-----------|---------|-------------------|---------|--------|---------|--------|--------|---------|----------|--------|---------|--------|-------|--------|------------|------|
| CO1       |         | y Win             |         |        |         |        |        |         |          |        | tain st | resses | s and | deforr | natior     | ı in |
| CO2       |         | ve the<br>semi-ii |         |        |         |        |        |         |          |        | on, Slo | pe, B  | M and | d SF o | f infii    | nite |
| CO3       |         | in the            | _       | tions  | for t   | he sh  | ear ce | entre   | for sy   | mme    | trical  | and ı  | ınsym | metri  | cal fr     | om   |
| CO4       |         | apolate<br>mmeti  |         |        | _       | theor  | y to   | calcı   | ılate    | the    | stresse | es an  | d de  | forma  | tions      | in   |
| CO5       |         | elop the          |         |        |         |        |        |         | buck     | ling l | oad o   | of con | npoun | d col  | umn a      | and  |
|           |         |                   |         |        |         |        | O-PS   |         | PPI      | NG     |         |        |       |        |            |      |
| PO/PSO    | 1       | 2                 | 3       | 4      | 5       | 6      | 7      | 8       | 9        | 10     | 11      | 12     | S1    | S2     | <b>S</b> 3 | S4   |
| CO1       | 2       | 2                 | 2       |        |         |        |        |         |          |        |         |        | 2     |        |            |      |
| CO2       | 2       | 2                 | 2       |        |         |        |        |         |          |        |         |        | 2     |        |            |      |
| CO3       | 2       | 2                 | 2       |        |         |        |        |         |          |        |         |        | 2     |        |            |      |
| CO4       | 2       | 2                 | 2       |        |         |        |        |         |          |        |         |        | 2     |        |            |      |
|           |         |                   |         |        | V       | I. Ass | essme  | nt Det  | tails (C | CIE &  | SEE)    |        |       |        |            |      |
| General l | Rules:  | Refer A           | Annex   | ure se | ction 1 |        |        |         |          |        |         |        |       |        |            |      |
| Continuo  | us Inte | ernal E           | valuat  | ion (C | IE): R  | efer A | nnexu  | re sect | ion 1    |        |         |        |       |        |            |      |
| Semester  | End E   | Examin            | ation ( | SEE):  | Refer   | Anne   | xure s | ection  | 1        |        |         |        |       |        |            |      |
|           |         |                   |         |        | V       | II.    | Leari  | ning I  | Resou    | rces   |         |        |       |        |            |      |
| VII.(a)   | Refer   | ence I            | Books   | :      |         |        |        |         |          |        |         |        |       |        |            |      |
| Δ         | dvanc   | ed                |         |        |         |        |        |         |          |        |         |        |       | NΔ     | ROSA       | 4    |

| V 11.( | (a). Reference books.                             |                                 |      |                                                         |
|--------|---------------------------------------------------|---------------------------------|------|---------------------------------------------------------|
| 1      | Advanced mechanics of solids and structures       | Krishna Raju N & Gururaj<br>D R | 1998 | NAROSA Publishers Company Delhi.                        |
| 2      | Advanced<br>Mechanics of<br>Solids", Tenth Print, | Srinath L. S                    | 1992 | Tata McGraw Hill<br>publishing<br>company. New<br>Delhi |
| 3      | Optimum Structural Design                         | Uri Kirsch                      | 1994 | McGraw Hill,<br>New York                                |
| 4      | Advanced theory of structures and Matrix Method   | Vazirani V N and Ratwani<br>M M | 1995 | Khanna publishers                                       |
| 5      | Indeterminate<br>Structural Analysis              | Sterling Kinney                 | 1996 | Oxford & IBH publishers                                 |

#### VII.(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=s4CN6aVKhPo&list=PLEE5D02698EAAF2C0

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



### Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:          | III     | Cour   | se Type: | PEC  |          |       |              |      |
|--------------------|---------|--------|----------|------|----------|-------|--------------|------|
| Course Title       | e: DESI | GN CO  | ONCEPTS  | OF S | SUBSTRUC | TURES |              |      |
| <b>Course Code</b> | :       | 230    | CCSP331  |      |          |       | Credits:     | 3    |
| Teaching Ho        | urs/We  | ek (L: | T:P:O)   |      | 3:0:0:   | 0     | Total Hours: | 40   |
| <b>CIE Marks:</b>  | 4       | 50     | SEE Ma   | rks: | 50       |       | Total Marks: | 100  |
| SEE Type: Theo     |         |        |          |      |          |       | Exam Hours:  | 3hrs |

#### I. Course Objectives:

The objective of this course is to make students to learn principles of subsoil exploration, To design the sub structures. To evaluate the soil shear strength parameters. .

#### **II.** Teaching-Learning Process (General Instructions):

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

**Introduction,** Site investigation, Insitu testing of soils, Subsoil exploration, Classification of foundations systems. General requirement of foundations, Selection of foundations, Computations of Loads, Design concepts.

RBT Levels: L1 L2 L3

Module-2: 8 hrs

Concept of soil shear strength parameters Settlement Analysis of footings, Shallow foundations in clay, Shallow foundation in sand & C  $\Phi$  soils, Footings on layered soils and sloping ground, Design for Eccentric or Moment Loads.

**RBT Levels: L1 L2 L3** 

Module-3: 8 hrs

Types of rafts, bearing capacity & settlements of raft foundation, Rigid methods, Flexible methods, soil structure interaction, different methods of modeling the soil. Combined footings (rectangular & trapezoidal), strap footings & wall footings, Raft – super structure interaction effects & general concepts of structural design, Basement slabs

**RBT Levels: L1 L2 L3** 

Module-4: 8 hrs

Deep Foundations: Load Transfer in Deep Foundations, Types of Deep Foundations, Ultimate bearing capacity of different types of piles in different soil conditions, laterally loaded piles, tension piles & batter piles, Pile groups: Bearing capacity, settlement, uplift capacity, load distribution between piles, Proportioning and design concepts of piles.

RBT Levels: L1 L2 L3

Module-5: 8 hrs

Types of caissons, Analysis of well foundations, Design principles, well construction and sinking. Foundations for tower structures: Introduction, Forces on tower foundations, Selection of foundation type, Stability and design considerations, Ring foundations – general concepts.

**RBT Levels: L1 L2 L3** 

| KDIL   | CVCIS.                                          |                        | 113 |   |      |      |      |      |      |    |    |    |            |    |            |    |
|--------|-------------------------------------------------|------------------------|-----|---|------|------|------|------|------|----|----|----|------------|----|------------|----|
|        |                                                 |                        |     |   | IV.  | COU  | RSE  | OUT  | COM  | ES |    |    |            |    |            |    |
| CO1    |                                                 |                        |     |   |      |      |      |      |      |    |    |    |            |    |            |    |
| CO2    | Understand the concepts of Settlement analysis. |                        |     |   |      |      |      |      |      |    |    |    |            |    |            |    |
| CO3    | Design various types of shallow foundation      |                        |     |   |      |      |      |      |      |    |    |    |            |    |            |    |
| CO4    | Desig                                           | Design pile foundation |     |   |      |      |      |      |      |    |    |    |            |    |            |    |
| CO5    |                                                 |                        |     |   |      |      |      |      |      |    |    |    |            |    |            |    |
|        |                                                 |                        |     |   | V. ( | CO-P | O-PS | O MA | APPI | ١G |    |    |            |    |            |    |
| PO/PSC | 1                                               | 2                      | 3   | 4 | 5    | 6    | 7    | 8    | 9    | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1    | 2                                               | 2                      | 2   |   |      |      |      |      |      |    |    |    | 2          |    |            |    |
| CO2    | 2                                               | 2                      | 2   |   |      |      |      |      |      |    |    |    | 2          |    |            |    |
| CO3    | 2                                               | 2                      | 2   |   |      |      |      |      |      |    |    |    | 2          |    |            |    |
| CO4    | 2                                               | 2                      | 2   |   |      |      |      |      |      |    |    |    | 2          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### **VII. Learning Resources**

#### VII (a):Reference Books:

CO<sub>5</sub>

| 1 | Analysis & Design of Substructures | Swami Saran                               | 1998 | Oxford & IBH<br>Pub. Co. Pvt. Ltd. |
|---|------------------------------------|-------------------------------------------|------|------------------------------------|
| 2 | Design of Foundation Systems       | Nainan P Kurian                           | 1992 | Narosa Publishing<br>House         |
| 3 | Optimum Structural Design          | Uri Kirsch                                | 1981 | McGraw Hill,<br>New York           |
| 4 | Foundation<br>Engineering          | R.B. Peck, W.E. Hanson &<br>T.H. Thorburn | 1984 | Wiley Eastern Ltd                  |
| 5 | Foundation Analysis and Design     | J.E. Bowles                               | 1996 | McGraw-Hill Int.<br>Editions       |

#### VII(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=lsYFtwwlHIw&list=PLbRMhDVUMngeiZjKPTPEFI1CByXmYX3Kv

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



### || Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. Structural Engineering

| Semester:             | III                                                         | Cou    | ırse Type:   | PEC     |                      |              |     |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------|--------|--------------|---------|----------------------|--------------|-----|--|--|--|--|--|
| Course Title          | : Advar                                                     | iced I | Design of Pr | restres | sed Concrete Structu | res          |     |  |  |  |  |  |
| Course Code           | Course Code: 23CCSP332 Credits: 3                           |        |              |         |                      |              |     |  |  |  |  |  |
| Teaching Ho           | urs/W                                                       | eek (I | L:T:P:O)     |         | 3-0-0-0              | Total Hours: | 40  |  |  |  |  |  |
| CIE Marks:            | 5                                                           | 0      | SEE Ma       | arks:   | 50                   | Total Marks: | 100 |  |  |  |  |  |
| SEE Type:             | SEE Type: Exam Hours: 03                                    |        |              |         |                      |              |     |  |  |  |  |  |
| I. Course Objectives: |                                                             |        |              |         |                      |              |     |  |  |  |  |  |
| • Deve                | Develop an advanced system of prestressed concrete members. |        |              |         |                      |              |     |  |  |  |  |  |

- Analyze and design the statically determinate prestressed concrete members.
- Demonstrate the stresses with anchorage system in prestressed concrete members.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

**Module-1:** 

Design of Section for Flexure: Allowable stresses - Elastic design of simple beams having rectangular and I-section for flexure - kern lines - cable profile and cable layout. Design of Sections for Shear: Shear and Principal stresses - Improving shear resistance by different prestressing Techniques - horizontal, sloping and vertical prestressing - Analysis of rectangular and l-beam Design of shear reinforcement - Indian code provisions, Importance of modulus of elasticity of Prestressing tendons, failures of prestressed concrete.

**RBT Levels: L2** 

**Module-2:** 8 Hrs

Shear and Torsional resistance- ultimate shear resistance- Design of shear reinforcement in torsion.

**RBT Levels: L3** 

**Module-3:** 8 Hrs

Transfer of Prestress in Pretensioned Members: Transmission of prestressing force by bond Transmission length, Flexural bond stresses - IS code provisions - Anchorage zone stresses in post tensioned members - stress distribution in End block - Analysis by approximate, Guyon and Magnel methods -Anchorage zone reinforcement.

**RBT Levels: L3** 

**Module-4:** 8 Hrs

Transfer of Prestress in Pretensioned Members: Transmission of prestressing force by bond Transmission length, Flexural bond stresses - IS code provisions - Anchorage zone stresses in post tensioned members - stress distribution in End block - Analysis by approximate, Guyon and Magnel methods -Anchorage zone reinforcement.

**RBT Levels: L3** 

Module-5: 8 Hrs

Statically indeterminate Structures: Advantages & disadvantages of continuous Prestressed beams - Primary and secondary moments - P and C lines - Linear transformation concordant and non- concordant cable profiles - Analysis of continuous beams and simple portal frames (single bay and single story)

RBT Levels: L3

| evels: L5                                                                          |
|------------------------------------------------------------------------------------|
| IV. COURSE OUTCOMES                                                                |
| Identify various prestressed structural elements.                                  |
| Apply analytical skills to evaluate performance of prestressed structural elements |
| Analyse prestressed structural elements with various considerations.               |
| Design and detail prestressed structural elements for various loading conditions.  |
|                                                                                    |

|       | V. CO-PO-PSO MAPPING |   |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
|-------|----------------------|---|---|---|---|---|---|---|---|----|----|----|------------|----|------------|----|
| PO/PS | 1                    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| O     |                      |   |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO1   | 3                    |   |   |   |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO2   | 3                    | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO3   | 3                    | 3 | 3 |   |   |   |   |   |   |    |    |    | 3          |    |            |    |
| CO4   | 3                    | 3 |   |   |   |   |   |   |   |    |    |    | 3          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII.(a): Reference Books:

| Sl.<br>No. | Title of the Book                    | Name of the author   | Edition and Year | Name of the publisher          |
|------------|--------------------------------------|----------------------|------------------|--------------------------------|
| 1          | Prestressed<br>Concrete              | N Krishnaraju        | 2, 1999          | Tata McGraw-<br>Hill Education |
| 2          | Prestressed<br>Concrete structures   | LinT. Y and H. Burns | 2, 2008          | WileyPublication               |
| 3          | Prestressed<br>Concrete              | N. Rajagopalan       | 3, 2005          | Narosa Publishing<br>House     |
| 4          | Design of<br>Prestressed<br>Concrete | A. Nilson            | 2, 2005          | John Willey &<br>Sons          |

#### VII(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=PcZpOexe5hI

https://archive.nptel.ac.in/courses/105/106/105106118/

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



# Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.



Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                                                                                                                                                                                                                                                                       | III                                                                                                    | Cour       | se Type:    | PEC                                     | 1                         |                           |                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------------------------|---------------------------|---------------------------|-----------------|--|--|--|--|--|
| Course Tit                                                                                                                                                                                                                                                                                      | le: DES                                                                                                | SIGN (     | OF INDUS    | STRIA                                   | AL STRUCTURES             |                           |                 |  |  |  |  |  |
| Course Code                                                                                                                                                                                                                                                                                     | :                                                                                                      | 230        | CCSP333     |                                         |                           | Credits:                  | 3               |  |  |  |  |  |
| Teaching Ho                                                                                                                                                                                                                                                                                     | urs/We                                                                                                 | ek (L:     | T:P:O)      |                                         | 3:0:0:0                   | Total Hours:              | 40              |  |  |  |  |  |
| CIE Marks:                                                                                                                                                                                                                                                                                      | 4                                                                                                      | 50         | SEE Ma      | irks:                                   | 50                        | Total Marks:              | 100             |  |  |  |  |  |
| SEE Type:                                                                                                                                                                                                                                                                                       |                                                                                                        |            | Т           | heory                                   |                           | Exam Hours:               | 3hrs            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | •                                                                                                      |            | I.          |                                         | Course Objectives:        | <u> </u>                  |                 |  |  |  |  |  |
| To learn principles of Design of industrial building, To design different components of industrial structures and to detail the structures. To evaluate the performance of the Pre-engineered buildings  II. Teaching-Learning Process (General Instructions):                                  |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| Chair and tark,                                                                                                                                                                                                                                                                                 | Chalk and talk, videos, Power Point presentation, animations.  III. COURSE CONTENT                     |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| Module-1: 8 hrs                                                                                                                                                                                                                                                                                 |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| Analysis of components n RBT Levels:                                                                                                                                                                                                                                                            | amely,                                                                                                 | girders    | _           |                                         | ity and Wind load. frames | Analysis and design       | gn of framing   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 |                                                                                                        | L <b>4</b> |             |                                         |                           |                           | 0.1             |  |  |  |  |  |
| Module-2:                                                                                                                                                                                                                                                                                       | deelen                                                                                                 | of         | .4 1        | (ata                                    | umad saluma / salu        | man residle lengalization | 8 hrs           |  |  |  |  |  |
| bracings inclu                                                                                                                                                                                                                                                                                  | _                                                                                                      | _          | =           | m (ste                                  | epped column / colu       | nin with bracket), p      | burnins, girts, |  |  |  |  |  |
| RBT Levels:                                                                                                                                                                                                                                                                                     | _                                                                                                      |            | ections.    |                                         |                           |                           |                 |  |  |  |  |  |
| Module-3:                                                                                                                                                                                                                                                                                       |                                                                                                        | L4         |             |                                         |                           |                           | 8 hrs           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | nsmiss                                                                                                 | ion line   | e towers fo | or win                                  | d load and design of      | towers including all      |                 |  |  |  |  |  |
| RBT Levels:                                                                                                                                                                                                                                                                                     |                                                                                                        |            |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | a roug und acaign or      | w                         |                 |  |  |  |  |  |
| Module-4:                                                                                                                                                                                                                                                                                       |                                                                                                        |            |             |                                         |                           |                           | 8 hrs           |  |  |  |  |  |
| Forms of light gauge sections, Effective width computation of unstiffened, stiffened, multiple stiffened compression elements of cold formed light gauge sections. Concept of local buckling of thin elements. Limiting width to thickness ratio. Post buckling strength.  RBT Levels: L2 L3 L4 |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| Module-5: 8 hrs                                                                                                                                                                                                                                                                                 |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| Concept of Pre- engineered buildings, Design of compression and tension members of cold formed light gauge sections, Design of flexural members (Laterally restrained / laterally unrestrained).  RBT Levels: L1 L2 L3                                                                          |                                                                                                        |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| IV. COURSE                                                                                                                                                                                                                                                                                      | IV. COURSE OUTCOMES                                                                                    |            |             |                                         |                           |                           |                 |  |  |  |  |  |
| †                                                                                                                                                                                                                                                                                               |                                                                                                        | •          | -           | gn and                                  | development of prol       | olem-solving skills.      |                 |  |  |  |  |  |
| CO2 design                                                                                                                                                                                                                                                                                      | CO1 Achieve Knowledge of design and development of problem-solving skills. CO2 design of gantry column |            |             |                                         |                           |                           |                 |  |  |  |  |  |

| CO3    | Analysis of transmission line towers and light gauge sections |                                        |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
|--------|---------------------------------------------------------------|----------------------------------------|---|--|--|--|--|---|--|--|--|--|---|--|--|--|
| CO4    | Understands the concept of pre-engineered buildings.          |                                        |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
|        | V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)                     |                                        |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
| PO/PSO | 1                                                             | 1 2 3 4 5 6 7 8 9 10 11 12 S1 S2 S3 S4 |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
| CO1    | 2                                                             | 2                                      | 2 |  |  |  |  | 2 |  |  |  |  | 2 |  |  |  |
| CO2    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                       |                                        |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
| CO3    | 2                                                             |                                        |   |  |  |  |  |   |  |  |  |  |   |  |  |  |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### **VII.(a):**Reference Books:

|   | ()                                                                   |                                 |      |                          |
|---|----------------------------------------------------------------------|---------------------------------|------|--------------------------|
| 1 | Design of Steel<br>Structures                                        | N Subramanian                   | 1999 | oxford University Press  |
| 2 | Design of Steel<br>Structures                                        | B.C. Punmia, A.K. Jain          | 2017 | Laxmi<br>Publications    |
| 3 | Design of Steel<br>Structures "Vol 1<br>and Vol.2,                   | Ramchandra and Virendra Gehlot. | 1984 | Scientific<br>Publishers |
| 4 | Limit State Design of Steel Structures                               | Duggal                          | 1987 | ТМН                      |
| 5 | IS800-2007, IS875-<br>1987, IS-801-1975.<br>Steel Tables, SP<br>6(1) | -                               | -    | BIS                      |

#### VII.(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=qJV5zdx7NJs

https://www.youtube.com/watch?v=5nLJHnCUMRI

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



# || Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M Tach In CAD Structures

|                                                                                                                                                    |                                                        |      | MI. 1e   | ech. In | CAD Structures     |              |     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|----------|---------|--------------------|--------------|-----|--|--|--|--|--|
| Semester:                                                                                                                                          | III                                                    | Cour | se Type: | PEC     |                    |              |     |  |  |  |  |  |
| Course Title: Design of Precast & Composite Structures                                                                                             |                                                        |      |          |         |                    |              |     |  |  |  |  |  |
| Course Code: 23CCSP334 Credits: 3                                                                                                                  |                                                        |      |          |         |                    |              |     |  |  |  |  |  |
| Teaching Ho                                                                                                                                        | Ceaching Hours/Week (L: T:P:O) 3:0:0:0 Total Hours: 40 |      |          |         |                    |              |     |  |  |  |  |  |
| CIE Marks:                                                                                                                                         |                                                        | 50   | SEE Ma   | ırks:   | 50                 | Total Marks: | 100 |  |  |  |  |  |
| <b>SEE Type:</b>                                                                                                                                   |                                                        |      | Т        | heory   |                    | Exam Hours:  | 03  |  |  |  |  |  |
|                                                                                                                                                    |                                                        |      | I        | •       | Course Objectives: |              |     |  |  |  |  |  |
| 1. Understand the concepts and techniques of precast construction and select or design precast elements suitable for project specific requirements |                                                        |      |          |         |                    |              |     |  |  |  |  |  |
| 0 1                                                                                                                                                |                                                        |      |          |         |                    |              |     |  |  |  |  |  |

collapse and Design composite floors and beam elements

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

Introduction: Concepts, components, Structural Systems and Design of precast concrete floors Need and types of precast construction, Modular coordination, Precast elements- Floor, Beams, Columns and walls. Structural Systems and connections.

**Design of precast Concrete Floors:** Theoretical and Design Examples of Hollow core slabs, Precast Concrete Planks, floor with composite toppings with and without props.

RBT Levels: L1, L2

Module-2: 8 hrs

Design of precast reinforced and prestressed Concrete beams: Theoretical and Design

Examples of ITB – Full section precast, Semi Precast, propped and unpropped conditions. Design of RC Nibs

RBT Levels: L3, L4

**Module-3:** 8 hrs

Design of precast concrete columns and walls: Design of braced and unbraced columns with corbels subjected to pattern and full loading. Design of Corbels Design of RC walls subjected to Vertical, Horizontal loads and moments, Design of vertical ties and horizontal joints.

RBT Levels: L3, L4

**Module-4:** 

Design of Precast Connections and Structural Integrity Beam bearing, Beam half Joint, Steel Inserts, Socket Connection, Structural integrity, Avoidance of progressive collapse, Design of Structural Ties.

RBT Levels: L3, L4

**Module-5:** 8 hrs

Design of Steel Concrete Composite Floors and Beams Composite Floors: Profiled Sheeting with concrete topping, Design method, Bending and Shear Resistance of Composite Slabs, Serviceability Criteria, Design Example

Composite Beams: Elastic Behaviour, Ultimate Load behaviour of Composite beams, Stresses and deflection in service and vibration, Design Example of Simply Supported beams.

RBT Levels: L3, L4

|        |                                                                                    |         |   |   | IV. | COU | RSE | OUT | COM | ES |    |    |            |    |            |    |
|--------|------------------------------------------------------------------------------------|---------|---|---|-----|-----|-----|-----|-----|----|----|----|------------|----|------------|----|
| CO1    |                                                                                    |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| CO2    | Design precast reinforced and prestressed concrete beams for different conditions. |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| CO3    | Design precast concrete columns and walls.                                         |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| CO4    | CO4 Analyse and design composite floors and beams                                  |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
|        | V. CO-PO-PSO MAPPING                                                               |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| PO/PSC | 1                                                                                  | 2       | 3 | 4 | 5   | 6   | 7   | 8   | 9   | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1    | 3                                                                                  | 3       |   |   |     |     |     | 3   |     |    |    |    | 3          |    |            |    |
| CO2    | CO2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                          |         |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| CO3    | 3                                                                                  | 3 3 3 3 |   |   |     |     |     |     |     |    |    |    |            |    |            |    |
| CO4    | 3                                                                                  | 3       |   |   |     |     |     | 3   |     |    |    |    | 3          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### **Learning Resources**

#### VII.(a): Reference Books:

| 1 | Precast Concrete – Design and applications                 | Hass A.M.      | 1983                                               | Applied Science                                         |
|---|------------------------------------------------------------|----------------|----------------------------------------------------|---------------------------------------------------------|
| 2 | Plant cast, Precast and<br>Prestressed concrete            | David Sheppard | 1989                                               | McGraw Hill                                             |
| 3 | Composite Structure<br>of Steel and Concrete<br>(Volume 1) | R.P. Johnson   | 1994                                               | Blackwell Scientific<br>Publication (Second<br>Edition) |
| 4 | NBC – 2005 ( Part I to Part VII)                           |                | IS 15916- 2011, IS<br>11447, IS6061 – I<br>and III | BIS Publications                                        |

#### VII.(b): Web links and Video Lectures (e-Resources):

https://onlinecourses.nptel.ac.in/noc20\_ar04/preview.

https://www.youtube.com/watch?v=fRqxXkxApSY.

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminars on recent research activities

**Group Discussion** 

Site visit



### || Jai Sri Gurudev || | Sri Adichunchanagiri Shikshana Trust (R) STR Institute of Techn



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:             | III     | Course Type    | e: PEC        |         |              |     |  |  |  |  |  |  |  |
|-----------------------|---------|----------------|---------------|---------|--------------|-----|--|--|--|--|--|--|--|
| <b>Course Title:</b>  | Admixt  | ires and Speci | al Concre     | etes    |              |     |  |  |  |  |  |  |  |
| <b>Course Code:</b>   |         |                |               |         |              |     |  |  |  |  |  |  |  |
| <b>Teaching Hou</b>   | rs/Weel | k (L: T:P:O)   |               | 3:0:0:0 | Total Hours: | 40  |  |  |  |  |  |  |  |
| CIE Marks:            |         | 50             | SEE<br>Marks: | 50      | Total Marks: | 100 |  |  |  |  |  |  |  |
| SEE Type:             |         |                | Theory        |         | Exam Hours:  | 03  |  |  |  |  |  |  |  |
| I. Course Objectives: |         |                |               |         |              |     |  |  |  |  |  |  |  |

- Understand the materials science of concrete
- Develop an ability to link the behaviour of concrete with the fundamental interactions between the ingredients
- Develop a fundamental understanding of the mechanisms governing concrete performance

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hrs

Overview of cement chemistry and concrete performance: Cement history and production, Quality control and composition, Overview of Cement Chemistry: Composition of Cement and Classification of Cement, Hydration of Cement, Overview of Concrete Performance: Curing & Hardened Concrete, Basics of Hardened Concrete.

Chemical Admixtures: Introduction, characteristics, classification, Water reducers: Classification, Mechanism of action, Applications, Superplasticizers

Module-2: 8 hrs

Chemical Admixtures: Set controllers – Accelerators and Retarders, Air entrainers, Concrete Rheology, Viscosity Modifying Agents (VMA), Mechanism of corrosion, Corrosion inhibitors, Shrinkage reducing admixtures, Other specialty admixtures, Curing compounds

Module-3: 8 hrs

**Mineral Admixtures:** Types, Composition and Particle size distribution, Microstructure of SCMs and Pozzolonic reactions, Pozzolonic activity, Electrical Conductivity method, Frattini test & Lime saturation method, Strength Activity test, Lime reactivity test, Mixture Proportioning and R3 test. Flyash: Uses, Classification, structure, effect on fresh and hardened concrete. Sugarcane Bagasse Ash: effect on fresh and hardened concrete . Silica fume: Availability, Properties, benefits, effects on fresh and hardened concrete. GGBFS: Formation of Slag, Types, properties, hydration, effects concrete properties, Rice husk ash, Metakaolin,

Module-4: 8 hrs

HPC: Mixture Proportioning. Topics in Fresh Concrete: Workability, Rheology, Rheological models, Rheological measurements. Design of SCC combining (i) Particle Packing and (ii) Rheology. Pumping of Concrete: Need, concrete pumps, pipes for pumping, Requirements of pumped concrete, Other factors.

Topics in Hardened Concrete: Mechanical Properties, Factors Affecting Strength, Cracking in concrete, Failure Modes in Concrete, Compressive Strength and Factors Affecting It, Behavior of Concrete Under Various Stress States,

Module-5: 8 hrs

Creep: Definition, nature, effects. Factors affecting creep. Shrinkage: Definition, Sources of restraint, plastic shrinkage, carbonation shrinkage, Combined Effect of Shrinkage and Creep. Shrinkage and creep Testing

Durability: Water as an Agent of Deterioration, Permeability, Chemical attack: Sulphate attack, Acid attack, Chloride attack and Carbonation. Corrosion of rebars: Mechanism and control. Alkali Silica Reaction: Manifestation. Freezing and thawing damage

| 110000011           |                                                                         |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
|---------------------|-------------------------------------------------------------------------|-------|---|---|---|---|---|---|---|----|----|----|------------|----|------------|----|
| IV. COURSE OUTCOMES |                                                                         |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO1                 | Discuss the cement chemistry and concrete performance                   |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO2                 | Explain about the role and mechanism of chemical admixtures in concrete |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO3                 | Emphasize on use of various types of mineral admixtures in concrete     |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO4                 | Discuss about factors related to high performance concrete              |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO5                 | Outline the durability aspects of concrete                              |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
|                     | V. CO-PO-PSO MAPPING (mark H=3; M=2; L=1)                               |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| PO/PSO              | 1                                                                       | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1                 | 3 3 3                                                                   |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO2                 | 3 3 3                                                                   |       |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO3                 | 3                                                                       | 3 3 3 |   |   |   |   |   |   |   |    |    |    |            |    |            |    |
| CO4                 | 3                                                                       | 3     |   |   |   |   |   |   |   |    |    |    | 3          |    |            |    |
| COL                 | _                                                                       | _     |   |   |   |   |   |   |   |    |    |    |            |    | ,          |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII(a): Reference Books:

| 1 | Concrete: Microstructure,<br>Properties, and Materials | Mehta, P. K., and Monteiro, P. J. M       | 4, 2014 | McGraw Hill,                                      |
|---|--------------------------------------------------------|-------------------------------------------|---------|---------------------------------------------------|
| 2 | Properties of Concrete                                 | Neville, A. M.                            | 2013    | Pitman Publishing,<br>Inc., MA                    |
| 3 | Supplementary Cementing<br>Materials in Concrete       | Thomas M.D.A.                             | 1997    | Blackwell Scientific Publication (Second Edition) |
| 4 | Steel Corrosion in Concrete                            | Bentur, A., Diamond, S., and Berke, N.S., | 1990    | E&FN Spon                                         |

| 5                                                                               | The Chemistry of Cement and Concrete | Lea, F. M. 197 |  | Chemical Publishing Company, Inc., |  |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------|----------------|--|------------------------------------|--|--|--|--|--|
| VII(b): Web links and Video Lectures (e-Resources):                             |                                      |                |  |                                    |  |  |  |  |  |
| https://onlinecourses.nptel.ac.in/noc23_ce61/preview                            |                                      |                |  |                                    |  |  |  |  |  |
| VIII: Activity Based Learning / Practical Based Learning/Experiential learning: |                                      |                |  |                                    |  |  |  |  |  |
| Conduction of technical seminar and group discussion                            |                                      |                |  |                                    |  |  |  |  |  |



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology CS Health and Education City. Dr. Vishanayandhana Road Kongari Rangalum 560061



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester: II                                      | I Cou | rse Type: | PEC  | C           |              |     |  |  |  |  |  |
|---------------------------------------------------|-------|-----------|------|-------------|--------------|-----|--|--|--|--|--|
| Course Title: EARTHQUAKE GEOTECHNICAL ENGINEERING |       |           |      |             |              |     |  |  |  |  |  |
| Course Code: 23CCSP342 Credits:                   |       |           |      |             |              |     |  |  |  |  |  |
| Teaching Hours/Week (L:T:P:O)                     |       |           | 3:0  | 0:0:0       | Total Hours: | 40  |  |  |  |  |  |
| CIE Marks:                                        | 50    | SEE Mai   | rks: | 50          | Total Marks: | 100 |  |  |  |  |  |
| SEE Type:                                         | Th    | neory     |      | Exam Hours: | 3            |     |  |  |  |  |  |

#### I. Course Objectives:

- 3. Plan a subsurface exploration
- 4. Evaluate appropriate bearing capacity correction factors to use in design
- 5. Select the appropriate deep foundation type for different soil profiles.
- 6. Compute earth pressure and implement the design procedure for earth retaining structures.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 hr

**INTRODUCTION TO GEOTECHNICAL EARTHQUAKE ENGINEERING:** Seismic hazards – Ground Shaking, Structural hazards, Liquefaction, Landslides, Retaining structure failures, Lifeline Hazards, Tsunami and Seismic Hazards; Mitigation of Seismic Hazards, Significant Historical Earthquakes.

**DYNAMIC SOIL PROPERTIES:** Representation of Stress conditions by Mohr Circle – Principal stresses and stress path; measurement of dynamic soil properties: Field test, lab tests, interpretation of observed ground response.

RBT Levels: L1, L2, L3.

Module-2: 8 hr

**LIQUEFACTION:** Liquefaction related phenomenon – flow liquefaction, Cyclic Mobility; Evaluation of liquefaction hazards; liquefaction Susceptibility historical criteria. Geologic criteria. Compositional criteria. State criteria: initiation of liquefaction- flow liquefaction surface, Influence of excess pore pressure. Evaluation of Initiation of liquefaction – effects of liquefaction.

RBT Levels: L1, L2, L3.

Module-3: 8 hr

**SOIL IMPROVEMENT FOR REMEDIATION OF SEISMIC HAZARDS:** densification techniques - Vibro techniques. Dynamic compaction, Blasting. Compaction grouting, Arial extent of Densification-; Reinforcement techniques – stone columns. Compaction piles. Drilled inclusions; grouting and mixing techniques-drainage techniques. Verification of soil improvement – lab testing techniques.; In-situ testing techniques, Geophysical testing techniques; Other considerations.

RBT Levels: L1, L2, L3.

Module-4:

GENERAL PRINCIPLE OF MACHINE FOUNDATION **DESIGN**: Types of machine and foundation, General requirements of machine foundations; permissible amplitude, Allowable soil pressure. Permissible stresses of concrete and steel., Permissible stresses of timber. **FOUNDATION OF RECIPROCATING MACHINE**; Modes of vibration of a rigid foundation block. Methods of analysis, Linear elastic weight less spring method, Elastic half space method. Effect of footing shape on vibratory response, Dynamic response of embedded block foundation. Soil mass participating in vibrations, Design procedure for a block foundation.

RBT Levels: L1, L2, L3.

Module-5:

**FOUNDATION OF IMPACT TYPE MACHINE**: Dynamic analysis. Design procedure for a hammer foundation **FOUNDATION OF ROTARY MACHINES**: Special considerations. Design criteria. Loads on a T.G. Foundations, Method of analysis and design, Resonance method. Amplitude method, Combined method

RBT Levels: L1, L2, L3.

| IV. COURSE OUTCOMES |                                                                                    |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
|---------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------|-------|---------|---------|-----|---|---|----|----|----|------------|----|------------|----|
| CO1                 | Achie                                                                              | Achieve Knowledge of design and development of problem-solving skills. |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO2                 | Understand the principles of engineering seismology.                               |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO3                 | Design                                                                             | n and                                                                  | devel | op an | alytica | al skil | ls. |   |   |    |    |    |            |    |            |    |
| CO4                 | Summarize the Seismic evaluation and retrofitting of structures.                   |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO5                 | Understand the concepts of earthquake resistance of reinforced concrete buildings. |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
|                     | <b>V. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1)                                   |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| PO/PSC              | 1                                                                                  | 2                                                                      | 3     | 4     | 5       | 6       | 7   | 8 | 9 | 10 | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1                 | 3                                                                                  | 3                                                                      |       |       |         |         |     |   |   |    |    |    | 3          |    |            |    |
| CO2                 | 3 3 3                                                                              |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO3                 | 3 3 3                                                                              |                                                                        |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO4                 | 3                                                                                  | 3 3 3                                                                  |       |       |         |         |     |   |   |    |    |    |            |    |            |    |
| CO5                 | 3                                                                                  | 3                                                                      |       |       |         |         |     |   |   |    |    |    | 3          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII(a) Reference Books:

| Sl.<br>No. | Title of the Book                                                               | Name of the author                  | Edition and Year | Name of the publisher |
|------------|---------------------------------------------------------------------------------|-------------------------------------|------------------|-----------------------|
| 1          | Dynamics of Structures –<br>Theory and Application to<br>Earthquake Engineering | Anil K. Chopra                      | 2007             | Pearson Education.    |
| 2          | Earthquake resistant design of structures                                       | Pankaj Agarwal, Manish<br>Shrikande | 2011             | PHI India.            |
| 3          | Geotechnical Earthquake<br>Engineering                                          | Steven L Kramer                     | 1996             | PHI series            |

#### VII(b): Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=SwY7-hKL8FI&list=PLLy\_2iUCG87CjkEM3IgTlehqzXSJeJUQL https://www.youtube.com/watch?v=eOS7Uk4S-JA&list=PLLy\_2iUCG87CjkEM3IgTlehqzXSJeJUQL&index=2 https://www.youtube.com/watch?v=CxITg8GOuTs&list=PLLy\_2iUCG87CjkEM3IgTlehqzXSJeJUQL&index=3 https://www.youtube.com/watch?v=Aa\_7tELKYYk&list=PLLy\_2iUCG87CjkEM3IgTlehqzXSJeJUQL&index=4

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminar and group discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology (CS Helder of Technology Property of the Park Property of the Pa



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:            | 3      | Cou   | ırse Type: | PEC   |         |              |     |
|----------------------|--------|-------|------------|-------|---------|--------------|-----|
| <b>Course Title:</b> | Fractu | re Me | echanics   |       |         |              |     |
| Course Code          | :      | 23    | CCSP343    |       |         | Credits:     | 3   |
| Teaching Ho          | urs/We | ek (L | :T:P:O)    |       | 3:0:0:0 | Total Hours: | 40  |
| CIE Marks:           | 50     | 0     | SEE Ma     | rks:  | 50      | Total Marks: | 100 |
| SEE Type:            |        |       | Т          | heory |         | Exam Hours:  | 03  |

#### I. Course Objectives:

- To compute the stress intensity factor, strain energy release rate and the stress and strain fields around a crack tip for linear and nonlinear materials.
- Know experimental methods to determine the fracture toughness.
- Use the design principles of materials and structures using fracture mechanics approach.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

#### **Module-1: Stress concentration in elastic materials**

8 Hrs

Theory of stress concentration in elastic materials, stress concentration factors around circular and elliptic holes. Influence of ratio of radii on stress concentration factor in elliptic hole.

**RBT Levels: L3** 

#### **Module-2: Linear Elastic Fracture mechanics**

8 Hrs

Modelling a crack as a flat elliptic hole by Inglis and the limitations of the model, Griffith theory of brittle fracture

Theories of linear elastic fracture mechanics, stress intensity factors, Irwin's definition. Fracture toughness KIc, KIIc, KIIIc & corresponding values of GC.

**RBT Levels: L3** 

#### Module-3: Elasto-plastic fracture mechanics

8 Hrs

Crack-tip plasticity in metals. Irwin's modification for elasto-plastic material.

J integral, CMOD, CTOD. Mixed mode problems and evaluation of critical fracture parameters.

**RBT Levels: L3** 

#### **Module-4: Fracture of Concrete**

8 Hrs

Limitations of theories of linear elastic fracture mechanics in concrete, Review of concrete behaviour in tension and compression.

Kaplan's experiments, concept of fracture energy, definition of a quasi-brittle material, concept of softening.

**RBT Levels: L3** 

#### Module-5: Advanced concepts in fracture behavior of concrete

8 Hrs

Definition of fracture energy by RILEM, Influence of size on fracture behavior, Bazant's size effect law. Size dependent & independent fracture energies.

Application of fracture mechanics in design of concrete structures.

**RBT Levels: L3** 

CO2

CO3

CO4 CO5

|                      | IV. COURSE OUTCOMES |                                                               |         |        |         |        |          |         |         |         |        |       |    |    |    |    |
|----------------------|---------------------|---------------------------------------------------------------|---------|--------|---------|--------|----------|---------|---------|---------|--------|-------|----|----|----|----|
| CO1                  | Ι                   | Discuss the stress concentration effects in elastic materials |         |        |         |        |          |         |         |         |        |       |    |    |    |    |
| CO2                  | , A                 | Adopt                                                         | Linea   | r Elas | tic Fra | cture  | mech     | anics 1 | for cra | ick mo  | deling | g.    |    |    |    |    |
| CO3                  | N                   | Make use of Elasto-plastic fracture mechanics                 |         |        |         |        |          |         |         |         |        |       |    |    |    |    |
| CO4                  | . [                 | Discuss about fracture behaviour of concrete                  |         |        |         |        |          |         |         |         |        |       |    |    |    |    |
| CO5                  | (                   | Outlin                                                        | e the A | Advan  | ced co  | oncept | ts in fr | acture  | behar   | vior of | conc   | rete. |    |    |    |    |
| V. CO-PO-PSO MAPPING |                     |                                                               |         |        |         |        |          |         |         |         |        |       |    |    |    |    |
| PO/PSO               | 1                   | 2                                                             | 3       | 4      | 5       | 6      | 7        | 8       | 9       | 10      | 11     | 12    | S1 | S2 | S3 | S4 |
| CO1                  | 3                   | 3                                                             |         |        |         |        |          |         |         |         |        |       | 3  |    |    |    |

#### VI. Assessment Details (CIE & SEE)

3

3

3

3

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

#### VII(a): Reference Books:

3

3

3

3

3

3

| Sl.<br>No. | Title of the Book                                 | Name of the author   | Edition and Year | Name of the publisher        |  |  |
|------------|---------------------------------------------------|----------------------|------------------|------------------------------|--|--|
| 01         | Theory of<br>Elasticity                           | Timoshenko & Goodier | 3, 1970          | McGrawHill                   |  |  |
| 02         | Continuum<br>Mechanics<br>Fundamentals            | Valliappan S.        | 1982             | Oxford IBH, ND.<br>New Delhi |  |  |
| 03         | Elementary Engineering Fracture Mechanics         | Broek, D.            | 4, 1987          | Martinus Nijhoff             |  |  |
| 04         | Fracture Mechanics- Fundamentals and Applications | T. L. Anderson       | 2, 1995          | CRC press                    |  |  |
| 05         | Advanced<br>Mechanics of<br>Solids                | Srinath L.S.         | 10, 1994         | Tata McGraw Hill             |  |  |

#### VII(b): Web links and Video Lectures (e-Resources):

https://archive.nptel.ac.in/courses/112/106/112106065/

#### VIII: Activity Based Learning / Practical Based Learning/Experiential learning:

Conduction of technical seminar and group discussion



## Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060
Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### M. Tech. In CAD Structures

| Semester:                                               | III    | Cour               | se Type: | PEC   |          |              |    |  |  |  |  |  |  |
|---------------------------------------------------------|--------|--------------------|----------|-------|----------|--------------|----|--|--|--|--|--|--|
| Course Title: ACTION AND RESPONSE OF STRUCTURAL SYSTEMS |        |                    |          |       |          |              |    |  |  |  |  |  |  |
| <b>Course Code</b>                                      | :      | 23C                | CSP344   |       | Credits: |              | 3  |  |  |  |  |  |  |
| Teaching Ho                                             | urs/We | ek (L:'            | Г:Р:О)   |       | 3:0:0:0  | Total Hours: | 40 |  |  |  |  |  |  |
| CIE Marks:                                              | 5      | 50                 | SEE Ma   | ırks: | 50       | 100          |    |  |  |  |  |  |  |
| SEE Type:                                               |        | Theory Exam Hours: |          |       |          |              |    |  |  |  |  |  |  |

#### I. Course Objectives:

- 1. Familiarize with procedures for calculating action effects for different types of structures frequently encountered in practice
- 2. Understand the importance of appropriate code provisions
- 3. Assess the basic need, concepts and procedures of different types of analysis
- 4. Characterize the response of different types of structural systems for Tall buildings.

#### **II. Teaching-Learning Process:**

Chalk and talk, videos, Power Point presentation, animations.

#### III. COURSE CONTENT

Module-1: 8 Hrs

**IS 875 PART 1, 2, 4, 5**: Sources, Nature and Magnitude, Probabilistic assessment, Characteristic and Design values. IS 875 PART 1 and 2 code provisions. Load combination rules for design. Load path for gravity loads- Tributary Area and Stiffness based approaches. Estimation of DL and LL on structural elements such as Slab, Beams, Columns, in different types of structural systems, Joint Loads on Trusses, Distributed load on Purlins- Numerical examples.

RBT Levels: L1, L2, L3.

Module-2: 8 Hrs

**Wind Load - IS 875 PART 3**: Buildings : Nature and Magnitude, Factors influencing wind loads, Internal and External pressure distribution, Design Wind Speeds and Pressure, Numerical Examples to calculate external and internal pressure for different types of buildings and regions – Flat roof, Pitched

RBT Levels: L1, L2, L3.

Module-3:

**Seismic Loads: IS 1893: Buildings**: Nature and Magnitude, Centre of mass and rigidity, Calculation of Design Seismic Force by Static Analysis Method, Dynamic Analysis Method, Location of Centre of Mass, Location of Centre of Stiffness, and Lateral Force Distribution as per code provisions. - Load path for Lateral loads – Floor diaphragm action.

RBT Levels: L1, L2, L3.

Module-4: 8 Hrs

**Vehicles Loads as per IRC 6 - 2014 on Road Bridges** – Class 70 R, Class AA, Class A, Class B, Tracked Vehicle, Wheeled Vehicle, Load Combinations, Impact, Wind, Water Currents, Longitudinal Forces: acceleration, breaking and frictional resistance, Centrifugal forces, temperature, Seismic forces, Snow Load, Collision Loads. Load Combinations – Simple Numerical examples.

RBT Levels: L1, L2, L3.

Module-5: 8 Hrs

**Types of Analysis and Structural forms of Tall Buildings**: Linear, Nonlinear behavior, Material nonlinearity, Geometric nonlinearity, Rigid and Elastic Supports, First Order Elastic Analysis, Second Order Elastic Analysis, first order Inelastic Analysis, Second order Inelastic Analysis – Concepts and Brief descriptions Structural forms in Tall buildings – Rigid frame, Braced Frames, Shear Walls, Core walls, Tubular, Belt truss, Outrigger.

RBT Levels: L1, L2, L3.

| IND I L                                          | CVCIS.                                                           | <b></b> , | <b>-</b> , <b>-</b> 5 | •      |        |       |        |       |        |      |    |    |            |    |            |    |
|--------------------------------------------------|------------------------------------------------------------------|-----------|-----------------------|--------|--------|-------|--------|-------|--------|------|----|----|------------|----|------------|----|
|                                                  | IV. COURSE OUTCOMES                                              |           |                       |        |        |       |        |       |        |      |    |    |            |    |            |    |
| CO1                                              | Apply the load combination for design of structural elements.    |           |                       |        |        |       |        |       |        |      |    |    |            |    |            |    |
| CO2                                              | Apply wind loads to different types of buildings and structures. |           |                       |        |        |       |        |       |        |      |    |    |            |    |            |    |
| CO3                                              | Design                                                           | n buil    | dings                 | for se | ismic  | loads |        |       |        |      |    |    |            |    |            |    |
| CO4                                              | Comp                                                             | ute ap    | propr                 | iate v | ehicle | loads | s on b | ridge | struct | ure. |    |    |            |    |            |    |
| CO5                                              |                                                                  |           |                       |        |        |       |        |       |        |      |    |    |            |    |            |    |
| <b>V. CO-PO-PSO MAPPING</b> (mark H=3; M=2; L=1) |                                                                  |           |                       |        |        |       |        |       |        |      |    |    |            |    |            |    |
| PO/PSO                                           | 1                                                                | 2         | 3                     | 4      | 5      | 6     | 7      | 8     | 9      | 10   | 11 | 12 | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 |
| CO1                                              | 3                                                                | 3         |                       |        |        |       |        | 3     |        |      |    |    | 3          |    |            |    |
| CO2                                              | 3                                                                | 3         |                       |        |        |       |        | 3     |        |      |    |    | 3          |    |            |    |
| CO3                                              | 3                                                                | 3         |                       |        |        |       |        | 3     |        |      |    |    | 3          |    |            |    |
| CO4                                              | 3                                                                | 3         |                       |        |        |       |        | 3     |        |      |    |    | 3          |    |            |    |
| CO5                                              | 3                                                                | 3         |                       |        |        |       |        | 3     |        |      |    |    | 3          |    |            |    |

#### VI. Assessment Details (CIE & SEE)

General Rules: Refer Annexure section 1

Continuous Internal Evaluation (CIE): Refer Annexure section 1

Semester End Examination (SEE): Refer Annexure section 1

#### VII. Learning Resources

VII(a) Reference Books:

| Sl.<br>No. | Title of the Book                              | Name of the author | Edition and Year | Name of the publisher             |
|------------|------------------------------------------------|--------------------|------------------|-----------------------------------|
| 1          | Advanced<br>Mechanics of Solids                | L. S. Srinath      | 2019             | Tata McGraw-Hill<br>Publishing Co |
| 2          | Matrix Analysis of<br>Structures               | Aslam Kassimali    | 2012             | Cengage Learning                  |
| 3          | IS 875 Parts (1 to 5),<br>IS 1893, IRC 6-2014, |                    |                  |                                   |

#### VII(b): Web links and Video Lectures (e-Resources):

 $\frac{https://www.youtube.com/watch?v=RB2k5hSYO3U\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28}{https://www.youtube.com/watch?v=5k8vdDSK6jU&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28&index=2}$ 

 $\underline{https://www.youtube.com/watch?v=pWecDpoJd9E\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0e}\\GNb28\&index=3$ 

 $\underline{https://www.youtube.com/watch?v=U4a0q4hYUWw\&list=PLH9QdGLzps2GOHlqEQpSBBLJha0eGNb28\&index=4}$ 

 $\label{lem:viii} \textbf{VIII: Activity Based Learning/Experiential learning:}$ 

Conduction of technical seminar and group discussion





BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi. Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015

Recognized by UGC, New Delhi with 2(f) & 12 (B)

### CIE & SEE Evaluation strategy for Autonomous Scheme MTech 2023

Note:

Calcuation of components of CIE for final marks is modified as per regulations

Date: 28/03/2024

|            |                                        |              |         |       |                 |      |                |                      | C       | ontinuo             | is Internal E                            | valu | ation (         | CIE) |                        |       |                |                |                          | 4 15 5                                              | 3.3     | Se             | mester                  | End E | xamin          | ation (S                | EE)  |              |                | prid      |
|------------|----------------------------------------|--------------|---------|-------|-----------------|------|----------------|----------------------|---------|---------------------|------------------------------------------|------|-----------------|------|------------------------|-------|----------------|----------------|--------------------------|-----------------------------------------------------|---------|----------------|-------------------------|-------|----------------|-------------------------|------|--------------|----------------|-----------|
|            |                                        |              |         |       |                 |      | I. Th          | eory Cor             | nponer  | nt -                |                                          |      |                 | п    | . Practic              | al Co | mponen         | t              | Hall III                 |                                                     |         |                | Theory                  |       |                | ractical                | 1    |              | Total          | pu        |
| SI.<br>No. | Course Type /Credits                   | Total<br>CIE | Min.    | ks    | - ž             |      | A. Unit        | test                 | 1000000 | ormative<br>ssments |                                          | ks   | . ×             |      | veekly<br>uation       | D.    | Interna        | l Test         | Tot.                     | Total<br>CIE                                        | In hrs. | Max.           | Max.                    | min.  | Max.           | Max.                    | min. | Total        | Marks<br>(CIE+ | = ==      |
|            |                                        | marks        | Eligty. | Marks | Min.<br>Eligty. | Nos. | Marks/<br>Each | Tot.<br>Marks        | Nos.    | Marks/<br>Each      | Tot. Theory<br>marks (I)                 | Mar  | Min.<br>Eligty. |      | Tot.<br>marks          | Nos.  | Marks/<br>Each | Total<br>marks | marks<br>(II)            | marks                                               | H       | cond.<br>marks | conside<br>red<br>marks | pass  | cond.<br>marks | consid<br>ered<br>marks | pass | SEE<br>marks | SEE)           | fin. pass |
| 1          | BSC/PCC/PEC<br>(3/4 Credit<br>courses) | 50           | 50%     | 50    | 50%             | 2    | 50             | 50<br>(avg.<br>of 2) | 1       | 50                  | 50<br>{(A+B)<br>scaled<br>down to<br>50} | -    |                 |      | -                      |       | -              |                |                          | 50 (I)                                              | 03      | 100            | 50                      | 40%   | -              | -                       | -    | 50           | 100            | 50%       |
| 2          | IPCC<br>(4 Credit<br>courses)          | 50           | 50%     | 50    | 50%             | 2    | 50             | 50<br>(avg.<br>of 2) | -       |                     | 50<br>(A)                                | 50   | 50%             | 50   | 50<br>(Avg.<br>of all) | 1     | 50             | 50             | 50<br>(Avg. of<br>C & D) | 50<br>(Sum of<br>I & II<br>scaled<br>down to<br>50) | 03      | 100            | 50                      | 40%   |                | -                       |      | 50           | 100            | 50%       |
| 3          | PCCL<br>(2 Credit<br>courses)          | 50           | 50%     | -     | -               | 1    | -              |                      |         |                     |                                          | 50   | 50%             | 50   | 50<br>(Avg.<br>of all) | 1     | 50             | 50             | 50<br>(Avg. of<br>C & D) | 4                                                   | 03      |                |                         |       | 100            | 50                      | 50%  | 50           | 100            | 50%       |

Formative (Successive) Assessments: Assignments/quiz/ seminars/field survey and report presentation/course project/etc. based on the faculty & dept. planning

Practical Conduction: The conduction of each experiment/program per week should evaluate for 50 Marks and average of all shall be taken.

In case of Integrated course, minimum eligibility shall be attained as prescribed in both the theory and practical components.

Self Learning Courses (SLC) Courses, Internship, Mini project & Major Project: Rubrics & Methodology shall be defined seperately

Head of Department Department of Civil Engineering S J B Instite te of Technology Uttarahalli Road, Kengeri Bengaluru-560 060

Sumsan

Dr. BABU. N.V Prof & Academic Dean SJB Institute of Technology **BGS Health & Education City** Kengeri. Bengaluru-560060



|| Jai Sri Gurudev || Sri Adichunchanagiri Shikshana Trust (R)

## SJB Institute of Technology



BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060 Approved by AICTE, New Delhi.

Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+'grade, Certified by ISO 9001 - 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

#### CIE and SEE guidelines based on course Type for M.Tech Autonomous Scheme 2023

#### Note:

- > The CIE conduction coordination will be done by the office of Controller of Examination (COE).
- > The SEE will be conducted by the office of Controller of Examination (COE).

| Continuous Internal Evaluation (CIE)                                                          | Semester End Examination (SEE)                                                         | Final Passing requirement                  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|
| 1. BSC/PCC/ PEC- Theory Course (03/04 Credit cour                                             | ses)                                                                                   |                                            |
| The weightage of Continuous Internal Evaluation (CIE) is 50% and f                            | For Semester End Exam (SEE) is 50%.                                                    |                                            |
| The minimum passing mark for the CIE is 50% of the maximum ma (25 marks out of 50).           | rks The minimum passing mark for SEE is 40% of the maximum marks (20 out of 50 marks). | declared as a pass in                      |
| Continuous Internal Evaluation: CIE will be conducted by the department and it will have only | Semester-End Examination:                                                              | the course if he/she secures a minimum of  |
| component:                                                                                    | 01 Duration of 03 hours and total marks of 100.                                        | 50% (50 marks out of 100) in the sum total |
| I. Theory component.                                                                          | • The question paper will have ten                                                     |                                            |
| Theory Component will consist of                                                              | questions. Each question is set for 20                                                 | taken together.                            |
| A. Internal Assessment Test                                                                   | marks.                                                                                 |                                            |
| B. Formative assessments                                                                      | • There will be 2 questions from each                                                  |                                            |
|                                                                                               | module. Each of the two questions under a                                              |                                            |
| A. Internal Assessment Test:                                                                  | module (with a maximum of 3 sub-                                                       |                                            |
| COMMERTINE                                                                                    |                                                                                        | 6                                          |

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060

Dr. BABU. N.V
Prof. & Academic Dean
SJB Institute of Technology
BGS Health & Education City
Kengeri Bengaluru 560050

- There are 02 tests each of 50 marks conducted during 7<sup>th</sup> week & 14<sup>th</sup> week, respectively.
- The question paper will have four questions (max of 3 sub questions) from the notified syllabus. Each question is set for 25 marks.
- The student have to answer 2 full questions (one from 1<sup>st</sup> & 2<sup>nd</sup> questions and another from 3<sup>rd</sup> & 4<sup>th</sup> question).
- Internal Assessment Test question paper shall be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### **B. Formative assessments:**

- 01 formative assessment for 50 marks shall be conducted by the course coordinator based on the dept. planning during random times.
- One formative assessment shall be completed before 12th week.
- The syllabus content for the formative assessment shall be defined by the course coordinator.
- The formative assessments include Assignments/ Quiz/ seminars/case study/field survey/ report presentation/ course project/etc.
- The assignment QP or Quiz QP shall indicate marks of each question and the relevant COs & RBT levels.
- The rubrics required for the other formal assessments shall be defined by the departments along with mapping of relevant COs & POs.

#### The final CIE marks will be 50:

Sum of {(Average of 2 Internal Assessment test of 50) + one formative assessment of 50}. It will be scaled down to 50 marks.

The documents of all the assessments shall be maintained meticulously.

questions), should have a mix of topics under that module.

- The students have to answer 5 full questions, selecting one full question from each module.
- Marks scored shall be proportionally reduced to 50 marks.

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060.

Dr. BABU. N.V
Prof. & Academic Dean
SJB Institute of Technology
BGS Health & Education City
Kengeri, Bengaluru-560060

#### 2. IPCC - Integrated with Theory & Practical (04 credit courses)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50).

Minimum eligibility of 50% marks shall be attained separately in both the theory component and practical component.

#### **Continuous Internal Evaluation:**

CIE will be conducted by the department and it will have 02 components:

- I. Theory Component.
- II. Practical Component.
- I. Theory Component will consist of
  - A. Internal Assessment Test
  - B. Formative assessments (Not required for Integrated courses)

#### A. Internal Assessment Test:

- There are 02 tests each of 50 marks conducted during 7th week & 14th week, respectively.
- The question paper will have four questions (max of 3 sub questions) from the notified syllabus. Each question is set for 25 marks.
- It is suggested to include questions on laboratory content in the Internal Assessment test Question papers.
- The student have to answer 2 full questions (one from 1st & 2nd questions and another from 3<sup>rd</sup> & 4<sup>th</sup> question).
- Internal Assessment Test question paper shall be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

#### **B. Formative assessments:**

• Not required for Integrated courses.

**II. Practical Component:** 

20MRaw Head of Department Department of Civil Engineering S J B Instit te of Technology Uttarahalli Road, Kengeri Bengaluru-560 060

The minimum passing mark for SEE is 40% of the maximum marks (20 out of 50 marks).

#### **Semester-End Examination:**

Only theory SEE for duration of 03 hours and total marks of 100.

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), should have a mix of topics under that module.
- The laboratory content must be included in framing the theory question papers.
- The students have to answer 5 full questions, selecting one full question from each module.
- Marks scored shall be proportionally reduced to 50 marks.

No Practical SEE for Integrated Course.

The student declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE and SEE taken together.

SJB Institute of Technology # 67, BGS Health & Education City, Dr. Vishnuvardhan Road, Kengeri, Bengaluru - 560 060.

Prof & Academic Dean SJB Institute of Technology **BGS Health & Education City** Kengeri, Bengaluru-560060

- C. Conduction of each experiment/program should be evaluated for 50 marks and average of all the experiments/programs shall be taken. (rubrics will be published by the lab conduction committee)
- **D.** One laboratory Internal Assessment test will be conducted during the 14<sup>th</sup> week for 50 marks. (rubrics will be published by the lab conduction committee)

#### The final CIE marks will be 50:

Sum of {I [ Avg. of 02 Internal assessment tests] + II [Avg. of (C & D)]}. It will be scaled down to 50 marks.

The documents of all the assessments shall be maintained meticulously.

#### 3. PCCL: Laboratory course (01 credit course)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 50% of the maximum marks (25 marks out of 50).

#### **Continuous Internal Evaluation:**

CIE will be conducted by the department and it will have only 01 component:

- I. Theory Component. (Not required for Laboratory course)
- II. Practical Component.

#### **II. Practical Component:**

- C. Conduction of each experiment/program should be evaluated for 50 marks and average of all the experiments/program shall be taken (rubrics will be published by the lab conduction committee).
- **D.** One laboratory Internal Assessment test will be conducted for 50 marks (rubrics will be published by the lab conduction committee).

The final CIE marks will be 50 = Avg. of (C & D)

Head of Department
Department of Civil Engineering
S J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060.

The minimum passing mark for SEE is 50% of the maximum marks (25 out of 50 marks). Semester-End Examination:

Only laboratory SEE will be conducted jointly by the internal examiner and external examiner appointed by COE as per the scheduled timetable for duration of 03 hours.

- The examination shall be conducted for 100 marks and shall be reduced to 50 marks proportionately.
- All laboratory experiments/programs are to be included for practical examination.
- Breakup of marks (Rubrics) and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners (OR) based on the course

The student is declared as a pass in the course if he/she secures a minimum of 50% (50 marks out of 100) in the sum total of the CIE and SEE taken together.

Dr. BABU. N.V
Prof & Academic Dean
SJB Institute of Technology
BGS Health & Education City

The documents of all the assessments shall be maintained requirement evaluation rubrics shall be meticulously. decided jointly by examiners. • Students can pick one question (experiment/program) from the questions lot prepared by the internal /external examiners jointly. • Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners. • General rubrics suggested for SEE: writeup-20%, Conduction procedure and results -60%, Viva-voce 20% of maximum marks. • Change of experiment is allowed only once and shall be assessed only for 85% of

Head of Department
Department of Civil Engineering
5 J B Instit te of Technology
Uttarahalli Road, Kengeri
Bengaluru-560 060.

Dr. BARII

Dr. BABU. N.V Prof & Academic Dean SJB Institute of Technology BGS Health & Education City Kengeri. Bengaluru-560060

the maximum marks.



|| Jai Shree Gurudev || Sri Adichunchanagiri Shikshana Trust ®

# SJB Institute of Technology

BGS Health and Education City, Dr. Vishnuvardhan Road, kengeri, Bengaluru – 560060



+91-80-28612445 / 46





Approved by AICTE, New Delhi



Affiliated to Visvesvaraya Technological University, Belagavi



Accredited by NBA



Accredited by NAAC with A+



Recognized by UGC, New Delhi with 2(f) and 12(B)



Certified by ISO 9001-2015



ATAL Ranking: Band Performer



Band of 151 to 300 in Innovation Category