

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology BGS Health and Education City, Dr. Vishnuvardhana Road, Kengeri, Bengaluru-560060

Accredited by NAAC with 'A+'grade, Certified by ISO 9001 – 2015 Recognized by UGC, New Delhi with 2(f) & 12 (B)

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2022-26

Semester-I/II

Subject:	Eleme	nts of	Electri	cal En	ngineer	ing				Subj	ect Co	de: 22I	EEE13	}		
						Cou	rse Ou	tcomes	S							
CO1	Unde	rstand	the cor	cepts o	of DC	circuits	and E	lectron	nagneti	sm						
CO2	Unde	rstand	the cor	cepts	of Sing	le phas	se and	Three 1	Phase A	AC circ	uits					
CO3	Unde	rstand	n the concepts of domestic wiring, electricity billing, circuit protective devices and													
CO4	Expla	in the	al safety measures													
CO4	person	ain the concepts of domestic wiring, electricity billing, circuit protective devices and onal safety measures CO-PO-PSO Mapping														
					(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2										1	3			
CO2	3	2										1	3			
CO3	3	2						1				1	3			
CO4	3	1				1		1				2	3			
Averag	3	2				1		1				1	3			

Subject:	Introdu	ction	to Elec	ctrical	Engin	eering				Subj	ect Co	de: 221	ESC14	2	
						Cour	rse Ou	tcomes	3						
CO1					and no		ention	al ener	gy reso	ources,	genera	l struct	ture of	electri	cal
CO2	Analy	ze basi	c DC a	and AC	C electi	ric circu	ıits.								
CO3	Explai machi		constru	ction,	workin	g princ	ciples a	and per	forman	ice of t	ransfo	rmers a	nd elec	etrical	
CO4		rstand t ersonal		_	ıres.					princi	ples of	circuit	protec	ctive de	evices
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3						2	1				2			
CO2	3	2										1			
CO3	3	2						1				1			
CO4	3	1				2		1				2			
Average	3	1.67				2	2	1			_	1.5		_	

Subject:	Introd	luction	to C]	progra	mmin	g				Subj	ect Co	de: 221	ESC14	15	
						Cou	rse Ou	tcome	S						
CO1	Elucid	ate the	basic a	rchitec	ture an	d funct	ionaliti	es of a o	comput	er and a	also rec	ognize t	he har	dware p	oarts
CO2	Apply	progra	mming	constru	ucts of (Clangu	age to s	olve th	e real w	orld pr	oblem				
CO3							•	•	menting ting solu	•	ons to p	roblem	s like s	earchin	gand
CO4	Desig	n and d	evelop	solutio	ns to pr	oblem	s using r	modula	r progra	ımming	constr	ucts usi	ng fund	ctions	
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	2		2						1			2
CO2	3	3	2	2		2						1			2
CO3	3	3	2	2		2						1			2
CO4	3	3	2	2		2						1			2
Average	3	3	2	2		2						1			2

Subject:	Introdu	ction	to C+	+ Prog	ramm	ing				Subj	ect Co	de:BP	LCK2	05D		
						Cou	rse Ou	tcomes	S							
CO1				,							es , use OP cor		ned op	perators	s and	
CO2											ince an		morphi	sm		
CO3	To in	pleme		featu	res of	C++	includ	ing te	mplate					andling	g for	
		<u> </u>				CO-PO										
CO						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	2	2		1			2							
CO2	3															
CO3	3 3 2 2 2 1 2 3 3 2 2 2 1 2															
CO4	3	3 3 2 2 2 1 2 3 3 2 2 2 1 2														
Average	3	3 3 2 2 2 1 1 2														
Subject:	Renew	able I	Energy	Sourc	es					Subi	ect Co	de:				
J			- 01			Cou	rse Ou	tcomes	5	J J						
CO1	Descri	be the	enviro	nment	al aspe					with va	rious c	convent	tional e	energy		
CO2											energy					
CO3												1		een ene	rgv.	
CO4						-					and hy				83	
	1 1					CO-PO			•			<u> </u>		<u> </u>		
~~							Os		<u> </u>					PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2				2	2						3	2		
CO2	2	2				2	2						3	2		
CO3	2	1				1	1						3	2		

CO4	2	1		1	1			3	2	
Average	2	1.5		1.5	1.5			3	2	

Semester-III

Subject:	Mathe	matics	-III fo	r EE E	Engine	ering				Subj	ect Co	de: BN	IATE	301	
						Cou	rse Ou	tcome	S						
CO1	Unders	tand that	physical	systems	can be de	escribed l	by differe	ntial equ	ations ar	nd solve s	uch equa	tions			
CO2	Make u	se of cor	relation a	and regres	ssion ana	llysis to f	ït a suitab	ole mathe	matical 1	model for	statistica	l data			
CO3				series to eld theory	•	e behavio	or of perio	odic fund	tions and	d their app	plications	in syster	n comm	unications	s, digital
CO4	differer	ice equat	ions									y Z-Trans			
CO5				ntinuous of testing	•	•	butions i	n analyz	ng the p	probability	models	arising	in the e	ngineerin	g field.
					(CO-PC)-PSO	Mapp	ing						
CO-						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1									1			
CO2	3	2	1									1			
CO3	3	2	1									1			1
CO4	3	2	1									1			1
CO5	3	2	1									1			
Avg.	3	2	1									1			1

Subject:	Electri	cal Ci	rcuit A	nalysi	S					Subj	ect Co	de: BE	E302			
						Cou	rse Ou	tcome	S							
CO1	Unde	rstand t	he basi	ic conc	epts, ba	asic law	s and r	nethod	s of ana	alysis o	f DC aı	nd AC 1	networ	ks		
CO2	Solve	compl	ex elec	tric circ	cuits us	sing net	twork tl	neorem	S							
CO3	•				•		circuits	and di	scuss ti	ansien	t analys	sis of R	L and l	RC circ	uit	
CO4																
CO5	Synthesize typical waveforms using Laplace transformation Solve unbalanced three phase systems and also evaluate the performance of two port networks. CO-PO-PSO Mapping															
					(CO-PC)-PSO	Mapp	ing							
CO-						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3							2	2					3	
CO2	3	3							2	2					3	
CO3	3	3							2	2					3	
CO4	3	2							2	2					2	
CO5	3	2							2	2					2	
Average	3	2.6							2	2					2.6	

Subjec	Analog Electronic Circuits	Subject Code: BEE303
	Course Outcomes	
CO1	Utilize the characteristics of transistor for different applicat	ions.

CO2	Estab	lish an	d test b	oiasing	circuit	s for ti	ransisto	or.								
CO3	Desig	n, anal	lyse an	d test t	ransist	or circi	uitry as	s ampli	fiers ar	nd oscil	lators					
	•	esign, analyse and test transistor circuitry as amplifiers and oscillators CO-PO-PSO Mapping														
COa		POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	3	2		1							1			3	
CO2	2	3	2		1							1			3	
CO3	2	3	2	1	1							1			3	
Avg.	2	3	2	1	1							1			3	

Subject: '	Trans	former	s & G	enerat	ors					Subj	ect Co	de: BE	EE304		
						Cou	rse Ou	tcome	S						
CO1	Unde	erstand	and ex	plain tl	he con	structi	on and	operati	on of s	ingle-p	hase tı	ansfor	mers.		
CO2		uate the	-	rmance	of thr	ree pha	se tran	sforme	rs by va	arious t	ests, p	hase co	onversi	on and	
CO3	Anal	yze the	constr	uction &	& work	ing of	Synchro	onous G	enerato	r by var	ious tes	sts.			
CO4	Expla	ain the o	construc	ction &	workir	ng of so	lar and	wind po	ower gei	nerators	5.				
						CO-P()-PSO	Mapp	ing						
CO						P	POs							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1			1	1						3	3	
CO2	3	2	2			1	1	2					3	3	
CO3	3	3	2			1	1	2					3	3	
CO4	3	3	1			1	1						3	3	
Average	3	2.5	1.5			1	1	2					3	3	

Subject: '	Transf	former	s and	Gener	ators l	ab				Subj	ect Co	de: BF	EEL30	5		
						Cou	rse Ou	tcome	S							
CO1				tests or ormers		formers	s to eva	aluate 1	he perf	ormano	e char	acteris	tics of	the 1-pl	nase	
CO2			-	te tran t ratios					_	in para	llel. Al	so inve	estigate	e the		
CO3	_	mpute the voltage regulation of synchronous generator using the test data obtained in the oratory and also evaluate the performance of synchronous generators from the test data. nulate the voltage regulation of a transformer and power angle curve of generator using														
CO4		boratory and also evaluate the performance of synchronous generators from the test data. imulate the voltage regulation of a transformer and power angle curve of generator using IATLAB/simscape. CO-PO-PSO Mapping														
					(CO-PC)-PSO	Марр	ing							
CO-						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	2		1	1		1	1			3	3		
CO2	3	2	2	2		1	1	2	1	1			3	3		
CO3	3	2	2	2		1	1	2	1	1			3	3		
CO4	3	2	2	2	3				1	1			3	3		
Average	3	2	2	2	3	1	1	2	1	1			3	3		

Subject:	Electric	cal Mea	asurem	ents ar	nd Inst	rument	ation			Subj	ect Co	de: BE	E306E	3		
_						Cou	rse Out	tcomes		_						
CO1	_	in the m and o	_				s of M	easuren	nents,	elemei	nts of	general	ized n	neasure	ment	
CO2	Meas	ure res	istance	, indu	ctance	and cap	oacitano	ce by di	ifferen	t meth	ods.					
CO3	Desci	ribe the	const	ruction	, work	ing and	l charac	cteristic	s of v	arious i	instrun	nent tra	nsforn	ners.		
CO4	Illust	rate the	e worki	ng of o	lifferei	nt elect	ronic ir	nstrume	nts an	d displ	ay dev	ices.				
					(CO-PO	-PSO	Mappii	ng							
COs						P	Os							PSOs		
COS	1	2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2															
CO2	2	2 2														
CO3	2	1 2														
CO4	2															
Average	2												2			
Subject: S	Social	Conne	ct and	Respo	nsibili	ity				Subj	ect Co	de: 215	SCR			
						Cou	rse Out	tcomes								
CO1	Unde	rstand	social	concer	ns and	addres	s it sens	sibly.								
CO2	Practi	ice sust	tainabi	lity and	l creati	vity										
CO3	Show	case p	lanning	g and o	rganiza	ational	skills									
					(CO-PO	-PSO	Mappii	ng							
COa						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1						3	3	3	3	2	1	3				
CO2						3	3	3	3	2	1	3				
CO3						3	3	3	3	2	1	3				
Average						3	3	3	3	2	1	3	_			

Subject: SCI LAB/MATLAB for Transformers and Generators S											Subject Code: BEEL358A					
						Cou	rse Ou	tcome	S							
CO1		Develop a program using Scilab software package in an intelligent manner to conduct different tests on transformers and generators to evaluate the performance characteristics.														
						CO-PO	-PSO	Mapp	ing							
COs	POs												PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2		2	3				1	1			3	3		
Avg.	3	2		2	3				1	1			3	3		

Co-ordinator Dr. J P Sridhar

HOD Dr. Chandrashekar M J