

(Accredited by NBA)

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2021-25

Semester-I/II

Subject:	Basic E	lectric	cal En	gineer	ing					Subje	et Code	e: 21EI	LE23		
						Cou	rse Ou	tcome	5						
CO1	Analyz	ze basi	c DC a	nd AC	electric	circuits	5.								
CO2	Explai	n the v	vorking	princi	ples and	d perfor	mance	of trans	forme	ers and el	lectrical	machin	les.		
CO3	Discus	s the c	oncepts	s of ele	ctric po	wer trai	nsmissi	on and	distrib	oution of	power.				
CO4	Under measu		heelec	tricity b	villing, v	working	g princi	plesof	circuit	t protecti	ve devi	ces and	person	al safet	у
						CO-PC)-PSO	Mapp	ing						
<u> </u>						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											3	2	
CO2	3	3											3	2	
CO3	3												3	2	
CO4	3					2		2					2		
Avg.	3					2							3	2	

Subject:	Basic H	Electric	al En	gineer	ing La	b				Subj	ect Co	de:21E	CLEL2	27		
						Cou	rse Ou	tcome	5							
CO1	Analy	ze and	verify	the K	irchhof	f's law	, Maxi	mum p	bower t	ransfer	• theore	em, ope	en circu	it and	short	
	circui	t condi	tion fo	r simp	le elect	rical ci	ircuit.									
CO2	Evalu															
CO3	Deter	mine an earth resistance and to demonstrate the controlling of lamp.														
CO4	Deter	mine e	fficien	cy of S	lingle-p	hase t	ransfor	mer.								
	Determine efficiency of Single-phase transformer. CO-PO-PSO Mapping															
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2				1				1			2	1		
CO2	2	2				1				1			2	1		
CO3	2	1				1	1	1		1			2	1		
CO4	2	2				1				1			2	1		
Avg.	2	1.75				1	1	1		1			2	1		

Semester-III

Subject:	Transfo	orm Ca	alculus,	, Fouri	er Seri	es and	Nume	rical		Sul	niect (Code: 2	1MA'	Г31	
Techniqu	es									Jui	jeer e	.out. 2		131	
						Cou	irse Oi	itcome	es						
CO1	To so	lve or	dinary	differe	ntial e	quatior	ns using	g Lapla	ace transf	orm.					
CO2							•		our of pe			ons and	d their	applica	ations
CO3	To us	se Fou	rier tra		s to ar	nalyze	probler	ns invo	olving co		·	ne signa	als and	l to app	oly Z-
CO4			athema equatio		odels	represe	ented b	y initia	al or bour	ndary	value	problen	ns invo	olving p	oartial
CO5				remals bodies				0	lus of va	riation	ns and	solve	proble	ms aris	ing in
	-					CO-PO	D-PSO	Mapp	oing						
00-						F	POs							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1									1			
CO2	3	2	1									1			
CO3	3	2	1									1			
CO4	3	2	1									1			
CO5	3	2	1									1			
Avg.	3	2	1									1			

Subject:	Analog	g Elect	ronics	Circui	its					Subj	ect Co	de: 211	EE32		
						Cou	rse Ou	tcomes	6						
CO1	Study	of Diod	le Circu	its and	Transis	tors at	low fre	quency	<i>'</i> .						
CO2	Desigi	n and ai	nalyze I	Multista	age, Fee	edback	and Po	weram	plifier C	ircuits.					
CO3	Desigi	n and ai	nalyze (Op-amp	based	Filters,	Signal g	genera	tors, co	mparat	ors and	conver	ters.		
CO4	Study	of Op-a	amp Ap	plicatio	ons and	DC Vol	tage Re	gulator	s.						
					(CO-PO)-PSO	Mappi	ing						
CO.	CO-PO-PSO Mapping POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2							1			1			2
CO2	3	2	2						1			1			2
CO3	3	2	2						1			1			2
CO4	3	2							1			1			2
Avg.	3	2	2						1			1			2

Subject:	Electrical Circuit Analysis	Subject Code: 21EE33
	Course Outcomes	
CO1	Understand the basic concepts, basic laws and methods of an	alysis of DC and AC networks
CO2	Solve complex electric circuits using network theorems	
CO3	Analyze the resonant series and parallel circuits and discus	s transient analysis of RL and RC circuit
COS	Switching action with evaluation of Initial conditions	
CO4	Synthesize typical waveforms using Laplace transformation	
CO5	Solve unbalanced three phase systems and also evaluate the p	performance of two port networks.

					(CO-PC)-PSO	Mapp	ing						
CO						P	Os							PSO	s
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3							2	2					3
CO2	3	3							2	2					3
CO3	3	3							2	2					3
CO4	3	1							2	2					2
CO5	3	2							2	2					2
Avg.	3	2.4							2	2					2.6

Subject:	Transfo	ormers	& Gen	nerators	5					Subj	ect Co	de:21F	EE34		
						Cou	rse Ou	tcome	5						
CO1	Unde	rstandi	ing the	constr	uction	and op	eration	of trai	nsforme	ers and	autotr	ansforr	ners.		
CO2	Expla	in the	perform	nance	of tran	sforme	r by va	rious t	ests, pł	nase co	nversic	n and	paralle	l opera	tion.
CO3	-	yze and te macl	1	in the o	operatio	on of tl	he DC	Genera	ator, sy	nchron	ous ma	chine o	connec	ted to	
CO4	-		•		-		•		ous mac es on ir		•	ous tes	ts, para	allel	
					(CO-PO)-PSO	Mapp	ing						
CO.						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1			1	1	3					3	2	
CO2	3	2	1			1	1	3					3	2	
CO3	3	3	1			1	1	3					3	2	
CO4	3	3	1			1	1	3					3	2	
Avg.	3	2.5	1			1	1	3					3	2	

Subject:	Electric	al Ma	chines	Lab-1						Subj	ect Co	de: 211	EEL35	5	
						Cou	rse Ou	tcomes	5						
CO1			ferent transf			ormers	to eva	luate t	he perf	ormanc	e chara	acterist	ics of t	the 1 -pł	nase
CO2			1						rating versio	in paral n.	lel and	l conne	ct thre	e	
CO3	1		•	0		•		0		ising th us gene					
					(C O-PO	-PSO	Марр	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2		1			1	1			3	2	
CO2	3	2	2	2		1			1	1			3	2	
CO3	3	2	2	2		1			1	1			3	2	
Avg.	3	2	2	2		1			1	1			3	2	

Subject:	Social	Conne	ect & R	Respon	sibility	T				Subj	ect Co	de: 218	SCR36		
						Cou	rse Ou	tcomes	5						
CO1	Unde	rstand	social	concer	ns and	addres	s it sen	sibly.							
CO2	Practi	ce sus	tainabil	lity and	d creati	vity									
CO3	Show	case pl	lanning	g and o	rganiza	tional	skills								
					(CO-PC)-PSO	Mapp	ing						
<u> </u>						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						3	3	2	2	2	1	3			
CO2						3	3	3	3	2	1	3			
CO3						3	3	3	3	2	1	3			
Avg.						3	3	2.67	2.67	2	1	3			

Subject:	Scilab :	for Tra	nsform	ers &	Genera	ators				Subj	ect Co	de: 21H	EEL38	1	
						Cou	rse Ou	tcomes	5						
CO1		•			U		-		ng Scil evaluat		-				U
CO2	-			-	-	on of ely usin	•		genera ware.	tor and	d evalu	uate th	ne perf	orman	ce of
					(СО-РО	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	2	3				1	1			3	2	
CO2	3	2	2	2	3				1	1			3	2	
Avg.	3	2	2	2	3				1	1			3	2	

Semester-IV

Subject: METHOD		LEX AN	NALYS	SIS, PR	OBAB	ILITY .	AND S'	TATIS	TICAL	Subj	ect Co	de: 211	MAT4	1	
						Cou	rse Ou	tcome	S						
CO1	electr	omagn	etic fi	eld the	eory. U	Jtilize	confor	mal tra	olex pot ansform rocessir	ation		-	-		-
CO2	Obtai	n Serie	s Solu	tions of	f Ordin	nary Di	fferent	tial Equ	uation.						
CO3		use of tical da		orrelat	ion and	d regre	ession a	analysi	s to fit	a suita	able ma	athema	tical m	nodel fo	or the
CO4				d con eering		s prob	ability	distril	outions	in an	alyzing	g the	probab	oility m	odels
CO5	Const	ruct jo	int pro	bability					trate th	e valid	ity of t	esting	the hyp	oothesi	s.
	1				()-PSO	марр	ing					DCO	
COs		•	2	4	_	1	Os –	0		10	11	10	1	PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1									1			
CO2	3	2	1									1			
CO3	3	2	1									1			
CO4	3	2	1									1			
CO5	3	2	1									1			
Avg.	3	2	1									1			

Subject:	Digital	Syster	n Desi	gn						Subj	ect Co	de:21E	EE42		
						Cou	rse Ou	tcome	S						
CO1	Solve	e proble	ems ba	sed on	differ	ent Boo	olean e	xpressi	on min	imizati	on Teo	chnique			
CO2	Anal	yze and	desig	n Diffe	erent C	ombina	ational	circuit	s.						
CO3	Illust	rate, ar	nalyze,	and de	esign d	ifferen	t Sequ	ential C	Circuits	•					
CO4	Expla	ain and	analyz	e state	e machi	ine mo	dels an	d the s	tructur	e of Me	emorie	s.			
						CO-PC)-PSO	Mapp	ing						
CO						Р	Os							PSOs	5
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				1	1	1							3
CO2	3	3				1	1	1							3
CO3	3	3				1	1	1							3
CO4	3	3				1	1	1							2
Avg.	3	3				1	1	1							2.75

Subject:	Microc	ontrol	ler							Subj	ect Co	de:21E	E43		
						Cou	rse Ou	tcome	5						
CO1	Discu	ss the a	rchitec	tural de	tails of	microc	controll	ers and	underst	and ins	truction	set.			
CO2		-	-		sembly n and of			ge progi S	rams to	facilitat	the d	ata mov	ement,	arithm	etic,
CO3	CO3 Design and apply the knowledge of on-chip peripherals and also interface external hardware to microcontroller.														
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														2
CO2	3	2			2										3
CO3	2	2	2	1	2							1			3
Avg.	2.3	2	2	1	2							1			2.7

Subject:	Electri	ic Moto	ors							Subj	ect Co	de:21I	EE44		
						Cou	rse Ou	tcome	5						
CO1		ribe the ose mot		ruction	, opera	ation ar	nd class	ificatio	on of E	OC Mot	or, AC	C motor	and s	pecial	
CO2	Expl	ain the	method	ls of te	esting of	of DC r	nachine	es and	detern	nine los	ses an	d effici	ency.		
CO3	-	ain the operform		ictiona	l featu	ires of 7	Three F	hase a	nd Sin	gle-pha	se ind	uction	Motor	s and as	sess
CO4	Expla moto	ain the ors.	operati	on, spe	eed co	ntrol &	startin	g meth	odsof	Synch	ronous	motor	and I	nductio	n
					(CO-PC)-PSO	Mapp	ing						
CO -						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										2	2	2	
CO2	3	3				2						2	2	2	
CO3	3	3										2	2	2	
CO4	3	3				2						2	2	2	
Avg.	3	2.67				2						2	2	2	

Subject:	BIOLO	DGY F	OR E	NGIN	EERS					Subj	ect Co	de: 211	BE45		
-						Cou	rse Ou	tcome	s						
CO1	To fa	miliari	ze the	studen	ts with	the ba	sic bio	logical	conce	ots and	their e	enginee	ring ap	plicati	ons
CO2	To er struct		ne stud	ents wi	ith an u	ınderst	anding	of bio	design	princip	oles to	create 1	novel c	levices	and
CO3	-			dents a s for na				w biolo	ogical	system	s can b	e re-de	signed	as	
CO4	To m	otivate	the stu	udents	develo	p the ii	nterdis	ciplina	ry visio	on of bi	ologic	al engii	neering	r	
						CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					1	2	1				1			
CO2	2					1	2	1				1			
CO3	2					1	2	1				1			
	2					1	2	1				1			
CO4	2											-			

Subject:	Electri	c Mac	hines I	Labora	atory -	2				Subj	ect Co	de: 211	EEL46	j	
						Cou	rse Ou	tcome	5						
CO1	Exper	riment	with	DC n	nachine	es to p	ore-det	ermine	their	perfor	mance	charac	cteristi	cs and	also
	contro	ol and a	analyze	e the sp	peed of	DC m	otor.								
CO2	Cond	uct di	ifferent	tests	to p	re-dete	rmine	the pe	erforma	ince ch	naracte	ristics	of inc	luction	and
02	synchronous motor A nelvze and compare performance of induction motors by conducting load test on single phase														
CON	Analyze and compare performance of induction motors by conducting load test on single phase														
COS	CO3 Analyze and compare performance of induction motors by conducting load test on single phase and three phase induction motors														
					(CO-PO	-PSO	Mapp	ing						
COs						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				1			3	3			2	3	
CO2	3	3				1			3	3			2	3	
CO3	3	3				1			3	3			2	3	
Avg.	3	3				1			3	3			2	3	

Subject:	Simula	tion of	f op-ar	np Cir	cuits					Subj	ect Co	de: 21]	EEL48	84	
						Cou	rse Ou	tcome	5						
CO1	Desig	n and a	analyse	e diffei	ent Op	o-amp a	amplifi	ers, os	cillators	s & gei	nerator	rs, activ	ve filter	rs.	
CO2	Const	ruct ar	nd inter	pret O	p-amp	operat	ors and	d conve	ertors						
CO3															
	CO-PO-PSO Mapping														
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3		2				2	1					2
CO2	3	2	3		2				2	1					2
CO3	3	2	3		2				2	1					2
Avg.	3	2	3		2				2	1					2

Subject:	Univer	sal Hu	man V	Values		Corr	rse Ou	tooma		Subj	ect Co	de: 211	U H49		
CO1		rstand ration f				tion to	wards			nent of	humar	n consc	iousne	ess and	Self
CO2	Reco	gnize t ence at a	he rel	levance				sonalit	y in h	armony	with	societ	y, nat	ure and	d co
CO3	Apply	y Profe	essiona	al ethic	s throu	ugh im	plication	ons of	Holist	ic und	erstand	ling to	wards	value-	based
		•			(CO-PC)-PSO	Mapp	ing						
COs				1		P	Os	1						PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1									2	2		3			
CO2						2	1	1	2	2		3			
CO3								3	2	2		3			
Avg.						2	1	2	2	2		3			
Subject:	Inter/I	ntra In	stituti	ional I	nterns	hips (S	SKD)			Subj	ect Co	de: 211	NT49)	
	1					Cou	rse Ou	tcomes	5						
CO1	Gain	Practica	al exp	erience	and k	nowled	lge of t	he ind	ustry ai	nd prof	essiona	als.			
CO2	Deve	lop and	exper	ience o	commu	nicatio	on, inte	rpersor	al and	other of	critical	skills i	n tech	nical fi	ields.
CO3	Demo	onstrate	the al	oilitiy t	to asses	ss and 1	report t	he tech	nnical o	locume	ents				
	Deve	lop a gr	reater	unders	tanding	g about	carrier	option	ns to ac	hieve c	carrier	goals in	n the i	ntereste	ed
CO4	techn	ical fiel	lds.												
	T				()-PSO	Mapp	ing					DGO	
COs	1	2	3	4	5	6 P	Os 7	8	9	10	11	12	1	PSOs 2	3
CO1	3	3	3		3			2	2	2		2	2	2	2
CO2	3	3	3					2	2	2		2	2	2	2
CO3	3	3	3					2	2	2		2	2	2	2
CO4	3	3	3					2	2	2		2	2	2	2
Avg.	3	3	3		3			2	2	2		2	2	2	2
				•	•	S	Semest	er-V				•			•
Subject:	Transm	ission	& Dis	tributic	on					Subi	ect Co	de: 21H	EE51		
J						Cou	rse Ou	tcomes	5	J			_		
	Expla	in trans	smissi	on and	distrib					importa	ance of	f differ	ent tra	nsmissi	ion
CO1	-	ns and							•	1					
CO2	-	ze and guration	-	ute pai	rameter	rs, perf	ormand	ce of th	e over	head tra	ansmis	sion lir	e for	differe	nt
CO3	· · · ·	oret cor		xplain	the use	of und	dergrou	ind cab	les.						
CO4	-	ify diff		· ·			<u> </u>			s qualit	v & rel	liabilitv	′ .		
		<u> </u>	•	<u>, , , , , , , , , , , , , , , , , , , </u>)-PSO			1					
<u> </u>							Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	2	1			2							3		
CO1	3	2			1	1 -	1	1		1	1	1	2	1	1
CO1 CO2	3	3	2			2							3		
	_		2 2			$\frac{2}{2}$							3		
CO2	3	3					2								

Subject:	Contro	l Syster	ms							Subj	ect Co	de: 21 E	EE52		
						Cou	rse Ou	tcome	5						
CO1	using	el electri block d nitter re	liagrai	n and		•		-							5
CO2		ine the nse and		•		•		•					•	time	
CO3	-	ze stabi	•	•	0		ocus, b	ode pl	ots and	Nyqui	st plots	s by Ut	ilize so	oftware	;
CO4		ate the						•		•	e effec	t of P, l	PI, PD	and PI	D
					(СО-РО)-PSO	Марр	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2							2	2	
CO2	3	2											2	2	2
CO3	3	2											2	2	2
CO4	3	2				2							2	2	2
Avg.	3	2				2							2	2	2

Subject:	Power	System	n Anal	ysis-1						Subj	ect Co	de:21E	E53		
						Cou	rse Ou	tcomes	5						
CO1	Mode	el the po	ower s	ystem	compo	nents &	& draw	per un	it impe	dance	diagrai	n of po	ower sy	ystem.	
CO2	Com	pute un	balanc	ed pha	sors in	terms	of sequ	ience c	ompon	ents ar	nd deve	elop sec	quence	netwo	rks.
CO3	Analy	yze thre	e phas	e sym	metrica	ıl, unsy	mmeti	ical fa	ults and	d select	ion of	circuit	breake	er rating	g.
CO4	Inspe	ect dyna	mics o	of sync	hronou	is mach	nine an	d deter	mine t	he pow	er syst	em stał	oility.		
					(СО-РО)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											3		
CO2	3	3											3		
CO3	3	3				2	2						3	1	
CO4	3	2				2	2						3	2	
Avg.	3	2.75				2	2						3	1.5	

Subject:	Power	Electro	onics							Subj	ect Co	de: 21E	EE54			
						Cou	rse Ou	tcome	5							
CO1	Under	rstand &	& adop	t types o	of powe	er diode	es with i	ts switc	hing ch	aracteri	stics &	effects	on RL	circuits		
CO2	Comp	Compare steady state, switching and gate characteristics of different power transistors.														
CO3	Expla															
CO4	Desig	n vario	us Con	verters	and ana	alyze th	eir perf	ormanc	e paran	neters						
					(CO-PC)-PSO	Mapp	ing							
00						Р	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	1									1		2		
CO2	3	3	1									1		2		
CO3	3	3	2									1		2		
Avg	3	3	3	1								1		2		

Subject:	Power	Electro	onics L	ab						Subj	ect Co	de:21 E	EEL55			
						Cou	rse Ou	tcomes	5							
CO1	To Stu	ıdy the	Static of	charact	eristics	and per	rformar	nce of s	emicon	ductor d	levices.					
CO2	Comp	are dif	ferent n	nethods	s of trig	gering S	SCR									
CO3		To Verify the performance of single phase controlled Full wave rectifier and AC voltage controller With and RLE Loads. To analyze the speed Control of different motors and to verify the performance of single-phase full														
CO4		To analyze the speed Control of different motors and to verify the performance of single-phase full ridge inverter connected to a resistive load														
	CO-PO-PSO Mapping															
00						Р	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	2	2						3	3				3		
CO2	3	2	2						3	3				3		
CO3	3	2	2						3	3				2		
CO4	3	2	2						3	3				2		
Avg.	3	2	2						3	3				2.5		

Subject: PROPER			METHO	ODOLO	OGY &	INTEL	LECT	UAL		Subj	ect Co	de: 211	RMI56	5		
						Cour	se Ou	tcomes	5							
CO1	Under	stand	basics,	needs	and im	portan	ce of r	esearch	1							
CO2	Discus	ss the	import	ance of	f engin	eering	ethics,	attribu	ition, ai	nd citat	tion in	researc	h			
CO3	-	scuss the importance of engineering ethics, attribution, and citation in research opt and utilize the concepts of Intellectual Property Rights in engineering for patents, demarks, and copyrights CO-PO-PSO Mapping														
	-				(CO-PO	-PSO	Mapp	ing							
COs						P	Os							PSOs		
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1					1		2			2		2			
CO2	1				1	1		3			2	1	2			
CO3	1				1	1		3			2	1	2			
Avg.	1				1	1		2.6			2	1	2			

Subject:	Energy	y Audi	t proje	ect						Subj	ect Co	de: 211	EEP58	3		
						Cou	rse Ou	tcomes	5							
CO1	Analy	ze the	data c	ollected	d for th	e energ	gy aud	it of a b	ouilding	g or Ind	dustry	or orga	nizatio	n		
CO2	Perfo	rm Coi	nparati	ive ana	ılysis w	vith and	d with	out ener	gy aud	it.						
CO3	Exam	ine the	energ	y savin	ig meas	sures to	be co	nsidere	ed with	econo	my con	siderat	ions			
CO4		Examine the energy saving measures to be considered with economy considerations Communicate effectively work as a team member/leader to manage projects and costs in a diversified environment.														
	CO-PO-PSO Mapping															
CO.						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	2	2	2	1	2	2	2					2			
CO2	3	2	2	2	1	2	2	2					2			
CO3	3	2	2	2		2	2	2					2			
CO4								1	3	3	2		2			
Avg.	3	2	2	2	1	2	2	1.75	3	3	2		2			

Subject: Renewable Energy Projects										Subject Code: 21EEP584						
Course Outcomes																
CO1	Gain	compre	ehensiv	e knov	wledge	about	renew	able en	ergy pr	rojects						
CO2	Develop skills in planning and designing renewable energy projects, considering factors such as location, resource availability, and environmental impact.															
CO3	Consider the broader societal and environmental impacts of renewable energy projects, fostering a commitment to sustainable practices and community engagement.															
CO4		Communicate effectively work as a team member/leader to manage projects and costs in a diversified environment.														
CO-PO-PSO Mapping																
COs	POs												PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	2	1	2	2	2					2			
CO2	3	2	2	2	1	2	2	2					2			
CO3	3	2	2	2		2	2	2					2			
CO4								1	3	3	2		2			
Avg.	3	2	2	2	1	2	2	1.75	3	3	2		2			

Co-ordinator Dr. J P Sridhar HOD Dr. Chandrashekar M J