

Department of Electrical and Electronics Engineering (Accredited by NBA)

Course Outcomes and CO-PO-PSO articulation Matrix

Batch: 2020-24

Subject: Basic Electrical Engineering Subject Code:18ELE13/23 **Course Outcomes CO1** Understand the basic concepts of DC and AC circuits and solve the problems on circuits **CO2** Analysis of Single Phase and three phase AC Circuits Apply the basic knowledge to obtain the desired parameters/performance characteristics of Transformer **CO3** and Electric Machines **CO4** Discuss types of domestic wiring with electrical safety Rules & standards **CO-PO-PSO** Mapping POs **PSOs** COs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 **CO1** 3 2 **CO2** 3 2 **CO3** 3 2 2 **CO4** 2 2 2.75 Average

Subject:	Basic E	Electric	al Eng	ineerin	g Lab					Subj	ect Co	de: 18E	ELEL1	7/27	
						Cou	rse Ou	tcomes	8						
CO1	Analy	ysis and	d verifi	ication	ofKir	choff's	s law, C	C&SC	C of a E	Electric	al Circ	uit			
CO2	Evalu	ate imp	oedance	e, powe	r & pov	ver fact	or of a	1 phase	/3 pha	se load					
CO3	Deter & UP	Determine earth resistance and demonstration of control of lamp, safety devices, cut section of machines & UPS													
					(CO-PC)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													
CO2	2	2													
CO3	2	2				1									
Average	2	2				1									

Semester-I/II

Semester-III

Subject:	Engine	ering N	/lathen	natics-I	II					Subj	ect Co	de: 18N	1AT31	-	
						Cou	rse Ou	tcomes	5						
CO1	Use L	Laplace	transf	orm an	d inve	rse Lap	place tr	ansfor	n in so	lving c	lifferer	ntial/in	tegral	equation	n
	arisin	g in ne	twork	analysi	s, cont	trol sys	tems a	nd oth	er field	s of en	gineeri	ng.			
CO2	Demo	onstrate	e Fouri	er serie	es to st	udy th	e beha	viour o	of perio	odic fu	nctions	s and th	neir ap	plication	ons in
	system	n com	nunica	tions, o	digital	signal	proces	sing an	d field	theory	′ .		-		
CO3	Make	use of	Fourie	er trans	form a	ınd Z-t	ransfo	rm to il	lustrate	e discre	ete/con	tinuous	funct	ion aris	ing
CO4	Solve	first a	nd seco	ond orc	ler ord	inary c	lifferer	ntial equ	uations	arising	g in eng	gineerir	ng pro	blems	
0.04	using	single	step a	nd mult	tistep r	numerio	cal met	thods.							
C05	Determine the externals of functional using calculus of variations and solve problems arising in dynamics of rigid bodies and vibrational analysis														
	in dy	in dynamics of rigid bodies and vibrational analysis.													
					(CO-PC)-PSO	Mapp	ing						
COg						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
C05	3	2													
Avg.	3	2													

Subject:	Electric	c Circu	it Ana	lysis						Subj	ect Co	de: 18E	EE32		
						Cou	rse Ou	tcome	5						
CO1	Unde	rstand	and ap	ply the	basic	concep	ots and	laws to	o analy:	ze DC	and A	Cnetwo	orks		
CO2	Apply	y netwo	ork the	orems	to solv	e com	plex ele	ectric c	rcuits						
CO3	Analy	ze the	resona	ant circ	uits an	d discı	iss trar	nsient a	nalysis	with I	nitial c	onditic	ons		
CO4	Synth	nesize v	vavefo	orms usi	ing La	place t	ransfor	matior	ı						
CO5	Analy	yze unb	balance	ed three	e phase	syster	ns and	also ev	aluate	the per	formai	nce of t	wo po	rt netw	orks.
		CO-PO-PSO Mapping													
COa		POs PSOs													
COS	1	2	3	4	12	1	2	3							
CO1	3	3													3
CO2	3	3													3
CO3	3	3													3
CO4	3	1													2
CO5	3	2													2
Average	3	2.4													2.6

Subject:	Transformers and Generators	Subject Code:18E	E33						
	Course Outcomes								
CO1	Understanding the construction and operation of transformer	rs and autotransform	ners.						
CO2	CO2 Explain the performance of transformer by various tests, phase conversion and parallel operation.								
CO3	Analyze and explain the operation of the DC Generator, infinite machine.	synchronous mac	hine connected to						
CO4	Compare and analyze the performance of Synchronous operation, and performance of Synchronous machines on int	machines by vari	ous tests, parallel						
	CO-PO-PSO Mapping								
COs	POs		PSOs						

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1			1	1	3					3	2	
CO2	3	2	1			1	1	3					3	2	
CO3	3	3	1			1	1	3					3	2	
CO4	3	3	1			1	1	3					3	2	
Average	3	2.5	1			1	1	3					3	2	

Subject:	Analog	g Electr	onic C	ircuits						Subj	ect Co	de: 18E	EE34		
						Cou	rse Ou	tcome	5						
CO1	Illust	rate the	e consti	uction	and w	orking	of dio	des, BJ	T and	FET					
CO2	Desig diode	gn and a es, BJT	analyze and Fl	e the di ET	ifferen	t ampli	fiers of	scillato	rs and	signal	conditi	oning c	circuits	using	
CO3	Anal	ysis of	transist	or beh	avior a	t diffe	rent fro	equenc	ies						
	CO-PO-PSO Mapping														
COa		POs PSOs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1									1			3
CO2	2	2	2		1							1			3
CO3	2	2	2									1			3
Average	2	1.67	1.67		1							1			3

Subject:	Digital	System	n Desig	gn						Subj	ect Co	de: 18E	EE35		
						Cou	rse Ou	tcomes	5						
CO1	solve	proble	ms bas	sed on	differe	nt Boo	lean ex	pressio	on mini	mizatio	on Tecl	hnique			
CO2	Analy	yse and	l Desig	n Diff	erent C	ombin	ational	circuit	s and S	Sequent	tial Cir	cuits			
CO3	Expla	in and	analyz	ze state	machi	ne moo	dels								
CO4	Desci	ribe the	e struct	ure of	Memor	ries									
	CO-PO-PSO Mapping														
COa		POs PSOs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3											3	3	
CO2	3	3				2	2						3	2	
CO3	3	3				2	2						3	2	
CO4	3	3				2	2						3	2	
Average	3	3				2	2						3	2.25	

Subject:	Electric	al and	Electr	onic M	leasure	ments				Subj	ect Co	de: 18E	E36		
						Cou	rse Ou	tcome	S						
CO1	Illusti	rate the	e meası	iremen	t of res	sistance	e, Indu	ctance	and ca	pacitan	ice usir	ng brid	ges and	l deter	mine
CO2	Expla	in the	workii	ng of v	various	meters	used f	for me	asurem	ent of	Power,	, Energ	y and o	lemon	strate
	the														
CO3	Apply	or o	develo	p the	techni	ques c	of exte	ending	the r	ange o	of inst	rument	s and	instru	ment
000	transformers														
CO4	Extend the working of different instruments, display and recording devices														
					(СО-РО	-PSO	Марр	ing						
CO.						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C 01	3	2	1										3		
CO2	3	2											3		

CO3	3	2	1						3	
CO4	3	2			1				3	
Average	3	2	1		1				3	

Subject:	Electric	cal Mac	chines	Lab 1						Subj	ect Co	de: 18E	EEL37		
						Cou	rse Ou	tcome	S						
CO1	Cond and 3	uct dif -phase	ferent transfo	tests o ormers	on trans	former	rs to ev	aluate	the per	formar	ice cha	racteris	stics of	the 1-]	phase
CO2	Conn transf	ect an formers	d ope for th	rate ti ree pha	ransfor ase ope	mers or eration	of diff and ph	ferent ase co	KVA nversio	rating n.	in pa	rallel a	ind co	nnect	three
CO3	Comp labora	Compute the voltage regulation of synchronous generator using the test data obtained in the aboratory and also evaluate the performance of synchronous generators from the test data.													
		CO-PO-PSO Mapping													
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2		2			1	1			3	2	
CO2	3	2	2	2		2			1	1			3	2	
CO3	3	2	2	2		2			1	1			3	2	
Average	3	2	2	2		2			1	1			3	2	

Subject:	Electro	nics La	aborato	ory						Subj	ect Co	de: 18E	EEL38		
						Cou	rse Ou	tcomes	5						
CO1	Desig	gn and	test dif	ferent	diode	circuits									
CO2	Desig	gn and	test am	plifier	and os	cillator	circui	ts and	analyz	e their	perfor	mances			
CO3	Utiliz	ze univ	ersal g	ates an	d IC's f	for cod	e conv	ersion	and ari	thmeti	c opera	ation			
CO4	Desig	gn and	verify	differe	nt cour	nters ar	nd sequ	ence g	enerato	ors					
					(C O-PC)-PSO	Mapp	ing						
COa								PSOs							
COS	1	2	3	12	1	2	3								
CO1	3	2		2	3				2	2					3
CO2	3	2		2	3				2	2					3
CO3	3	2		2	3				2	2					3
CO4	3	2		2	3				2	2					3
Average	3	2		2	3				2	2					3

Semester-IV

Subject:	Engineering Mathematics 4	Subject Code:18EE41
	Course Outcomes	
CO1	Use the concepts of analytic function and complex pote electromagnetic field theory	ntials to solve the problems arising in
CO2	Utilize conformal transformation and complex integral a visualization and image processing	arising in aerofoil theory, fluid flow
CO3	Apply discrete and continuous probability distributions arising in engineering field	in analysing the probability models
CO4	Make use of correlation and regression analysis to fit a statistical data	suitable mathematical model for the
CO5	Construct joint probability distributions and demonstrate th	e validity of testing the hypothesis.
	CO-PO-PSO Mapping	

COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2													
CO2	3	2													
CO3	3	2													
CO4	3	2													
CO5	3	2													
Average	3	2													

Subject:	Power	Genera	tion ar	nd Eco	nomics					Subj	ect Co	de: 18E	EE42		
						Cou	rse Ou	tcomes	6						
CO1	Interp	pret the	worki	ng of h	ydroel	ectric j	power	plant a	nd anal	yse the	e differ	ent tur	bine us	es and	
COI	econo	omic as	pects of	of hydr	o gene	ration.									
	Unde	erstand	and ex	plain tl	he oper	ration of	of diffe	erent th	ermal p	olants a	nd con	npare t	hem w	.r.t to	
02	econo	omic as	pects.												
CO 2	Illust	rate and	d infer	the op	eration	and in	nportar	ice of 1	nuclear	power	plants	and its	s benef	its to	
003	econo	omy.													
004	Understand and classify various substations, explaining the importance of grounding and power factor improvement														
CO4	factor improvement.														
	•				(CO-PO)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2	2						3	2	
CO2	2					2	2						3	2	
CO3	2	2				2	2						2	2	
CO4	2	2				2	2						2	2	
Averag	2	2				2	2						2.5	2	

Subject: '	Transm	ission	and Di	istribut	ion					Subj	ect Co	de: 18E	E43		
						Cou	rse Ou	tcomes	5						
CO1	Expla	ain tran	smissi	on and	distril	oution	schem	e, iden	tify th	e impo	rtance	of diff	erent t	ransmi	ssion
COI	system	ms and	type o	f insul	ators										
CO2	Analy	yse and	comp	ute the	param	eters of	f the tr	ansmis	sion lir	ne for c	lifferer	nt confi	guratio	ons.	
CO3	Asses	ss the p	erform	ance o	f overh	ead lir	nes								
CO4	Interp	pret cor	ona, ez	xplain	the use	of und	lergrou	ind cab	les						
CO5	Class	ify diff	erent t	ypes of	f distril	bution	system	is; exar	nine its	s qualit	y & rel	iability			
		CO-PO-PSO Mapping POs PSOs													
COs		CO-PO-PSO Mapping POs PSOs													
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2							3		
CO2	3	3	2	1		2							3		
CO3	3	3	2	1		2							3		
CO4	3	3				2							3		
CO5	3	3	2	1		2							3		
Average	3	2.8	2	1		2							3		

						Cou	rse Ou	tcomes	5						
CO1	Expla	in the	constru	uctiona	l featu	res, cla	ssificat	tions a	nd oper	ration of	of DC,	AC &	special	Motor	s.
CO2	Analy condu	ze an cting s	d asse suitable	ess the e tests.	e perfo	ormanc	e char	acteris	tics ar	nd spe	ed con	ntrol o	f DC	motor	rs by
CO3	Expla their j	in the perform	constr nance.	uctiona	al featu	res of	three p	ohase a	ind sin	gle-pha	ise Ind	uction	Motor	s and a	issess
CO4	Explain the operation, speed control & starting methods of Synchronous motor and Induction motors CO-PO-PSO Mapping														
	CO-PO-PSO Mapping														
COa	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2							2	2	
CO2	3	2				2							2	3	
CO3	3	2				2							2	3	
CO4	3	2				2							2	3	
Average	3	2				2							2	2.75	

Subject:	Electro	magne	tic Fie	ld Theo	ory					Subj	ect Co	de: 18E	EE45		
						Cou	rse Ou	tcome	S						
COI	Apply	differ	ent coo	rdinates	system	s, Coulo	omb's I	law and	l Gauss	Law fo	r the ev	aluation	nofele	ectric f	fields
COI	produ	ced by	differe	nt charg	ge conf	iguratio	ns.								
CO2	Calcu	late the	e energy	and po	otential	due to a	a syster	n of cha	arges &	explai	n the b	oehavio	or of e	lectric	field
02	across	s a bou	ndary c	onditio	n.										
CO3	Exhib	it the k	nowled	lge of p	ropertie	es of co	nductor	s, diele	ctrics, c	apacita	nce				
CO4	Expla	in the I	Poisson	's, Lapl	ace equ	ations	and beł	navior o	of magn	etic fiel	ds and 1	materia	ls.		
CO5	Asses	s time v	varying	fields a	and pro	pagatio	n of wa	ves in c	lifferen	t media	•				
					(CO-PC)-PSO	Марр	ing						
CO-						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											2		1
CO2	3	2											2		1
CO3	3	2											2		1
CO4	3	2											2		1
CO5	3	2											2		1
Avg.	3	2											2		1

Subject:	Operati	ional A	mplifi	ers and	LIC					Subj	ect Co	de: 18E	E46		
						Cou	rse Ou	tcome	5						
CO1	Desci	ibe ide	al and	practic	cal opa	mps an	nd desig	gn amp	lifier c	ircuits	using o	pamps	5.		
CO2	Desig	n and a	analyze	e Opan	np Filte	ers, osc	illators	s, Signa	al proc	essing	and no	n-linea	r circui	its like	
	Schm	itt trig	gers, c	ompara	tors ar	nd conv	verters								
CO3	Analy	/se and	emplo	oy volta	age reg	ulator	circuits	s and I	cs.						
CO4	Unde	rstand	and ex	plain P	PLL, V	CO and	d timer	circuit	S						
	CO-PO-PSO Mapping														
COg	CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1									1	1		2
CO2	3	3	3	1								1			2
CO3	3	3	3	1								1			2
CO 4	2	1	1									1			2

	Average	2.5	2	2	1								1	1		2
--	---------	-----	---	---	---	--	--	--	--	--	--	--	---	---	--	---

Subject:	Electric	al Mac	chines	Lab 2						Subj	ect Co	de: 18E	EEL47		
						Cou	rse Ou	tcomes	6						
CO1	Exper contro	riment ol and a	with analyze	DC n e the sp	nachine beed of	estop DCm	ore-det otor.	ermine	their	perfor	mance	charac	cteristic	cs and	also
CO2	Cond and sy	uct d ynchroi	ifferen nous m	it tests notor.	to	pre-det	termine	the	perfo	rmance	e char	acteris	tics of	f indu	iction
CO3	Analy and th	Analyze and compare performance of induction motors by conducting load test on single phase and three phase induction motors.													
					(CO-PO	-PSO	Mappi	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2		2			1	1			3	2	
CO2	3	2	2	2		2			1	1			3	2	
CO3	3	2	2	2		2			1	1			3	2	
Average	3	2	2	2		2			1	1			3	2	

Subject: (Op-amj	ps and	Linear	ICs La	ab					Subj	ect Co	de: 18E	EL48		
						Cou	rse Ou	tcome	5						
CO1	Deter signal	mine (proce	the cha ssing c	tracteri vircuit,	stics o oscilla	f OP-4 tors, fi	Amp an lters et	nd util c, and	ize it a test usi	s linea ng sim	r circul ulation	it like packa	amplif ge.	ier, rec	tifier,
CO2	Desig trigge	n and r, com	test the parator	e OP-A	Amp as test usi	non-li ng sim	near cir ulation	rcuit lil packa	ke diffe ge.	erentiat	or and	integra	ator, Z	CD, So	hmitt
CO3	Desig	Design and study of Linear IC's as multivibrator power supplies, voltage regulator													
	CO-PO-PSO Mapping														
CO -		POs PSOs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		1				2	2		1			2
CO2	3	2	2		1				2	2		1			3
CO3	3	2	1		1				2	2		1			3
Average	3	2	1.67		1				2	2		1			2.67

Semester-V

Subject:	Manage	ement a	& Entr	reprene	urship					Subj	ect Co	de: 18E	EE51		
						Cou	rse Ou	tcome	5						
CO1	Expla intrap	in the	natur ship	e, cha	racteris	stic, ne	eeds a	nd pro	ocess o	of man	ageme	nt, ent	repren	eurship	and
CO2	Apply gover	the l nment	knowle agenci	edge of es and	f proje also aj	ect prop pply kr	posal f nowled	or get ge of c	ting th pm/ pe	e fund rt algor	ing fro rithm f	om dif: or ente	ferent rprise	private	e and
CO3	Utilize the schemes and facilities provided by government, for enterprise & SSI, social responsibilityManage the human, material resources and capital in enterprise														
CO4	Manage the human, material resources and capital in enterprise														
	CO-PO-PSO Mapping														
CO.						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								2	3	2				1	
CO2	1							3	2	2	2			1	
CO3						1	1	3	2	2			1	1	
CO4	1					1		2	2	2	2	1	1	1	

Average 1 1 2.5 2.25 2 1 1 1														
	Average	1			1	1	2.5	2.25	2	2	1	1	1	

Subject:	Microc	ontroll	ers							Subj	ect Co	de: 18E	EE52		
						Cou	rse Ou	tcome	S						
CO1	Discu	iss the	archite	ctural	details	of mic	roconti	rollers	and ins	structio	n set				
CO2	Deve	lop an	d anal	yse the	e asser	nbly a	nd C l	anguag	ge prog	grams t	o facil	itate th	e data	move	ment,
02	arithn	netic, l	ogical,	brancl	ning op	peration	n and o	other op	peration	18					
CO3	Desig	n and	apply	the kno	owledg	ge of oi	n-chip	periphe	erals an	d also t	to inter	face ex	ternal	hard w	are to
	micro	microcontroller CO-PO-PSO Manning													
	CO-PO-PSO Mapping														
COa						Р	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														2
CO2	3	2			2										3
CO3	2	2	2	1	2							1			3
Average	2.3	2	2	1	2							1			2.66

Subject:	Power	Electro	onics							Subj	ect Co	de: 18E	EE53		
						Cou	rse Ou	tcomes	5						
CO1	Illustr	ate typ	es of po	ower ele	ectronic	es circui	its with	applica	tions, d	esign ai	nd analy	yze pow	er diod	le circu	its
CO2	To ex	plain st	teady st	ate, sw	itching	and gat	e chara	cteristic	es of po	wer trar	nsistors	and Th	yristors		
CO3	To de	sign an	d analy	ze the p	perform	ance pa	aramete	ers of va	rious C	onverte	rs				
CO4	CO-PO-PSO Manning														
	CO-PO-PSO Mapping														
CO	POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1									1		2	
CO2	3	3	1									1		2	
CO3	3	3	1									1		2	
CO4	3	3	1			1						1		2	
Average	3	3	1			1						1		2	

Subject:	Signals	and S	ystems							Subj	ect Co	de: 18E	EE54		
						Cour	rse Out	tcomes	5						
CO1	Expla	in Bas	ic sign	als, its	classif	ication	and p	roperti	es of va	arious s	systems	8			
CO2	Analy convo	vsis of olution	the g meth	iven c ods, TI syst	ontinu Solve tem	ous an differ	d disc ence	and d	LTI Sy lifferen	stems tial e	using quatior	frequents and	ncy res	sponse k diag	and gram
CO3	 Explain Fourier transform representation of continuous time and discrete time non –periodic signals and the properties of Fourier Transforms, the applications of transform representation to study signals and linear time invariant systems. Interpret the use of Z-transform in the complex exponential representation of discrete time 														
CO4	Interpret the use of Z-transform in the complex exponential representation of discrete time signals and the analysis of systems.														
					0	CO-PO	-PSO	Mappi	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2		1								1			3
CO2	2	2	1	1								1			3
CO3	2	2	1	1								1			3
CO4	2	2	1	1								1			3

Average 2 2 1 1 3											
	Average	2	2	1	1				1		3

Subject:	Electrica	al Mac	chines	Design	ı					Subj	ect Co	de: 18E	EE55			
						Cour	rse Ou	tcomes	5							
CO1	Comp machin	are el ne des	ectrica sign	l engir	neering	materi	ials an	d its j	propert	ies, fu	ndame	ntal as	pects	of elec	trical	
CO2	Design	n of m	ain dir	nensio	n, shun	t and se	eries f	ield wi	ndings	of DC	machir	ne.				
CO3	Design reactan	n outp nce of	out equivation equivatina equivatina equivatina equivatina equivatina equivatina equivat	uations ormer	s, main	dimen	ision,	estimat	the the	numbe	r of co	oling	tubes a	and lea	kage	
CO4	Design	n outp	ut equa	ation, s	tator a	nd roto	r circui	its of I	nductio	on mac	hine an	d Sync	chronou	us macl	hine.	
	CO-PO-PSO Mapping															
CO -		CO-PO-PSO Mapping POs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2															
CO2	3	3	2	2		2	2							2		
CO3	3	3	2	2		2	2							3		
CO4	3	3	2	2		2	2						2	3		
Average	2.75	3	2	2		2	2						2	2.67		

Subject:	High V	oltage	Engine	eering						Subj	ect Co	de: 18E	EE56			
						Cou	rse Ou	tcomes	5							
CO1	Apply	y their	knowl	edge to	o distir	iguish l	breakd	own pł	nenome	enon in	dielect	rics an	d speci	ificatio	ns of	
	Equip	ment c	conforr	ning to	stand:	ards.										
CO2	Expla	in diff	erent t	ypes of	genera	ation of	f high /	AC & 1	DC vol	tages a	nd cur	rents.				
CO3	Unde	rstand	the pra	ctical 1	neasur	ement	technic	ques fo	r high	voltage	s and c	currents	8			
CO4	Sumn	narize	overvo	ltage p	henom	enon a	nd insu	lation	coordi	nation	in elect	tric pov	wer sys	stems		
CO5	Acqu	ire the	knowl	ed ge of	f testin	g vario	us mat	erials a	and elec	ctric ap	paratu	s in po	wer sys	stems.		
	CO-PO-PSO Mapping															
COs		POs PSOs PSOs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2				2	2						3	2		
CO2	3	2				2	2						2	2		
CO3	3	2				2	2						2	2		
CO4	2	1				1	1						3	2		
CO5	3	2				2	2						3	2		
Average	2.6	1.8				1.8	1.8						2.6	2		

Subject: 1	Microc	ontroll	er Lab	oratory	7					Subj	ect Co	de: 18E	EEL57		
						Cou	rse Ou	tcomes	5						
CO1	Form	ulate p	rogran	ns to ha	undle d	ata mo	vemen	t, arith	metic a	nd logi	ical ins	tructio	ns		
CO2	Deve	lop coc	les to h	andle	differe	nt data	types								
CO3	Interf	ace an	d contr	ol the	externa	l perip	herals	using r	nicroco	ontrolle	r				
	CO-PO-PSO Mapping														
COa					PSOs										
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2		3				2	2					3
CO2	2	3	2		3				2	2					3
CO3	2	3	2	2	3				2	2		1			3
Average	2	3	2	2	3				2	2		1			3

										-						
Subject:	Power	Electro	onics L	ab						Subj	ect Co	de: 18E	EEL58			
						Cou	rse Ou	tcome	S							
CO1	To St	udy the	Static	charact	eristics	and per	rformar	nce of s	emicon	ductor d	evices.					
CO2	To lea	arn the o	differei	nt metho	ods of t	riggerin	g SCR									
CO3	To Ve and R	erify the L Load	e perfoi ls.	mance	of singl	le phase	econtro	olled Fu	ıll wave	rectifie	r and A	C volta	ge cont	roller V	Vith R	
CO4	To an	alyze tł	ie spee	d Contr	ol of di	fferent	motors									
CO-5	To dis	scuss th	e perfo	rmance	of sing	gle phas	e full b	ridge ii	nverter o	connect	ed to rea	sistive l	oad			
	CO-PO-PSO Mapping															
<u> </u>		CO-PO-PSO Mapping POs PSOs														
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	1						1	1		1		3		
CO2	3	3	1						1	1		1		3		
CO3	3	3	1			1	1		1	1		1		2		
CO4	3	3	1			1	1		1	1		1		2		
CO5	3	2	1			1	1		1	1		1		2		
Averag	3	2.8	1			1	1		1	1		1		2.4		

Semester-VI

Subject: (Contro	l Syste	ms							Subj	ect Co	de: 18E	EE61		
						Cou	rse Ou	tcome	5						
CO1	Analy	ze and	l mode	l electr	ical an	d mech	nanical	systen	n using	analog	gous.				
CO2	Apply funct	y block	k diag system	ram re s.	duction	n techi	niques	and si	gnal fl	ow gra	aph me	ethods	to obt	ain tra	insfer
CO3	Desig respo	n of c nse	ontrol	system	ns and	determ	nine tra	insient	and st	ady sta	te time	e respo	nse and	d frequ	iency
CO4	Analyze the stability of the control system performance using root locus, bode plots and Nyquist plots. CO-PO-PSO Mapping														
	CO-PO-PSO Mapping														
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1										2	2	
CO2	1	2	1										2	1	
CO3	2	3	2			1							2	2	2
CO4	2	3	2			1							2	1	2
Average	2.7	2.7	2.7			2.7							2.7	2.7	1.6

Subject:	Power	Systen	n Analy	/sis-1						Subj	ect Co	de: 18E	EE62			
						Cou	rse Ou	tcome	S							
CO1	Unde	rstand	one-lin	e diagra	ım, per	unit sys	stem &	constru	uct per u	unit imp	edance	e diagra	m of po	wersy	stem.	
CO2	Analy: rating	ze thre	e phas	e symr	netrica	l faults	on pov	ver sys	tem an	d unde	rstand	selectio	n of ci	cuit bro	eaker	
CO3	Comp	ute unl	balance	d phase	ors in te	erms of	sequer	nce com	nponent	ts and a	lsodev	elop seo	quence	netwo	rks.	
CO4	Analyze various unsymmetrical faults on power system															
CO5	Inspe	Inspect dynamics of synchronous machine and determine the power system stability.														
					(CO-PC)-PSO	Mapp	ing							
CO-						P	Os							PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3											3	3		
CO2	3	3				2	2						3	2		

CO3	3	3		2	2			3	2	
CO4	3	3		2	2			3	2	
CO5	3	2						3	2	
Average	3	2.8		2	2			3	2.2	

Subject:	Digital	Signal	Proces	ssing						Subj	ect Co	de: 18E	E63		
						Cou	rse Ou	tcome	S						
CO1	Analy convo	ze sig	nals u using	sing th periodi	ne disc c, mat	crete F rix and	ourier tabula	transfo r meth	orm (D ods.	9FT). A	And so	lve pro	oblems	on cir	cular
CO2	Solve algori	proble thms.	ems on	efficio	ent con	mputat	ion of	DFT ι	using D	IT and	DIF-	FFT ar	nd com	nposite	DFT
CO3	Imple parall	ement o el, caso	digital cade, la	systen adder s	ns (FII tructur	R and re and l	IIR sy linear p	vstems) phase re	in a v ealizatio	ariety on).	of forr	ns (dire	ect for	m I an	d II,
CO4	Apply	y desig	n (IIT	and BL	LT) tec	hnique	s for II	IR type	e (Butte	rworth	and Cl	hebysh	ev) dig	gital filt	ers.
CO5	Design FIR type digital filters using windowing method and frequency sampling method.														
	Design FIR type digital filters using windowing method and frequency sampling method. CO-PO-PSO Mapping														
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2													3
CO2	3	2													3
CO3	2	2													3
CO4	3	3	2												3
CO5	3	3	2												3
Average	2.6	2.4	2												3

Subject:	Embed	Ided S	ystems	5						Subj	ect Co	de:18F	EE644			
						Cou	rse Ou	tcome	5							
CO1	Unde	rstand	about	the con	nponer	nts and	interfa	ces of	embed	ded sys	stems.					
CO2	Enum	nerate a	about t	rade-of	fs and	challer	nges of	embed	lded sy	vstems						
CO3	Apply	y softw	are asp	pects an	nd prog	grammi	ing to	design	embed	ded sys	stem					
	CO-PO-PSO Mapping															
CO		POs														
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2													1	
CO2	2	2	1									1			1	
CO3	2	2	1		1										1	
Average	2	2	1		1							1			1	

Subject:	Electri	c Vehi	cle Te	chnolo	gy					Subj	ect Co	de:18E	EE646		
						Cou	rse Ou	tcome	S						
CO1	Unde and c	erstand haracte	types cristics	of EV of veh	and ut icles.	tilize tl	ne con	cepts o	f kinet	ics, dy	namics	, perfoi	rmance	e paran	neters
CO2	Model energy storage systems for EV and HEV, charging methods and power electronic converter for batteries														
CO3	Explain and adopt different drive trains and propulsion systems for EV and HEV.														
CO4	Desig	gn and	analyse	e electr	ic and	hybrid	electri	c vehi	cles.						
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1			1	1							1	

CO2	2	2	2	2	2	2			1	3	
CO3	2	2	2	2	2	2			1	3	
CO4	2	2			2	2			1	3	
Average	2	2	1.6	2	1.7	1.7			1	2.5	

Subject: (Contro	l syster	n lab							Subj	ect Co	de: 18E	EL66		
						Cou	rse Ou	tcomes	5						
CO1	Asses softw	ssing th	ne time kage a	e and and and and disc	frequer create o	ncy do compor	main 1 nents	respons	ses of a	a given	secon	d orde	er syste	em by	using
CO2	Desig	n, anal	yze an	d simul	late Le	ead, La	g and I	Lag Lea	ad com	pensate	ors for	given s	specifi	cations	
CO3	Deter receiv	mine th ver pair	he perf [.] used i	forman n conti	ce char rol syst	racteris cems	tics of	AC a	nd DC	Servor	notors	and sy	nchro-	Transr	nitter
CO4	simulate the DC Position and feedback control systems to study the effect of P, PI, PD and PIDController and Lead compensator on the step response of the systemWrite a script file to plot root locus, bode plot, Nyquist plots to study and compare the stability														
CO5	Controller and Lead compensator on the step response of the system Write a script file to plot root locus, bode plot, Nyquist plots to study and compare the stability aspects of the system using a software package.														
					(CO-PO	-PSO	Mappi	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1			2				2	2				2	2
CO2	3	1			2				2	2				2	2
CO3	3								2	2				2	1
CO4	3	2			2				2	2				1	2
C05	3	2			2				2	2					3
Average	3	1.5			2				2	2				1.75	2

Subject:	Digital	Signal	Proces	ssing L	ab					Subj	ect Co	de: 18E	EL67		
						Cou	rse Ou	tcomes	5						
CO1	Comp theore	oute th em.	e freq	luency	Respo	onse a	nd tim	e Res	ponse	of the	giver	syste	m usir	ng sam	pling
CO2	Solve suitat	e impul ole soft	lse resp ware a	ponse a nd com	nd ste pare tl	p respo he resu	onse of lts.	a give	n diffe	rence e	quation	n theore	etically	y & by 1	using
CO3	Comp plot n	oute N- nagnitu	-point ide and	DFT a l phase	s well respor	N-poin 1se	nt FFT	(Both	DIT a	nd DI	F) of a	given	sequer	nce and	l also
CO4	Perform Convolution of linear and circular two sequences using DFT and IDFT. Design and implement IIR and FIR digital filter to meet the given specification using suitable														
CO5	Design and implement IIR and FIR digital filter to meet the given specification using suitable software														
					(CO-PO)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2	3				2	2					3
CO2	3	2		2	3				2	2					3
CO3	3	2		2	3				2	2					3
CO4	3	2		2	3				2	2					3
CO5	3	2		2	3				2	2					3
Average	3	2		2	3				2	2					3

Subject: Mini Project

Subject Code: 18EEMP68

CO1	Apply the fundamental knowledge of mathematics, science and engineering principles in design of solutions to problems addressing societal and environmental concerns Make links across different areas of knowledge and to generate develop and evaluate ideas and														
CO2	Make	links a	across (differer	nt area	s of kr	nowled he proi	ge and ecttask	to ger	nerate,	develo	p and	evaluat	te idea	s and
CO3	Comn	nunicat	e effec	tively a	nd to pr	esenti	deas cle	early an	d coher	ently in	both t	he writ	ten and	oral fo	rms
CO4	Work	in a tea	ammer	nber/le	aderto	manag	ge proje	cts and	costs ir	n a dive	rsified e	environ	ment.		
	CO-PO-PSO Mapping														
COs		POs PSOs													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2										2	2	2	2
CO2	3	2			2							2	3	3	3
CO3										3			3	3	3
CO4						3			3	3	3		2	2	2
Average	3	2			2	3			3	3	3	2	2.5	2.5	2.5

Semester-VII

Subject:	Power	Systen	n Ana	lysis-2						Subj	ect Co	de: 181	EE71		
						Cou	rse Ou	tcomes	5						
CO1	Form	ulate n	etwork	matric	ces for	solving	g load f	flow pr	oblems	5.					
CO2	Perfo	rm loac	d flow	studies	s using	iterativ	ve tech	niques.							
CO3	Solve	econo	mic lo	ad disp	atch ar	nd unit	comm	itment	proble	ms.					
CO4	Analyze short circuit faults using bus impedance matrix and power system stability by numerical techniques.														
	CO-PO-PSO Manning														
	CO-PO-PSO Mapping														
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		2									3		
CO2	3	3	2	2									3		
CO3	3	3	2	2		2	2				3		3	2	
CO4	3	3	2	2		2							3		
Average	3	3	2	2		2	2				3		3	2	

Subject:	Power	System	n Prot	ection		Subj	ect Co	de: 181	EE72						
						Cou	rse Ou	tcomes	5						
CO1	Discu	ss vario	ous con	ponent	s of pro	otection	, schem	ie, perfo	ormance	of rela	ys and	overcur	rent pro	otection	l .
CO2	Expla	in the p	orotectio	on of ge	enerator	rs, moto	ors, tran	sforme	r & bus-	zone.					
CO3	Enum	erate th	ne const	truction	and op	eration	of diffe	erent typ	pes of c	ircuit b	reakers.				
CO4	Emphasize the features of fuse, causes of over voltages and its protection & modern trends in power system protection.														
CO-PO-PSO Mapping															
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3				2	2						3		
CO2	3	3				2	2						3	2	
CO3	3	3				2	2						3		
CO4	3	3				2	2						3		
Average	3	3				2	2						3	2	

Subject:	Integra	ation o	f Distr	ributed	l Gene	ration				Subj	ect Co	de:18F	EE733		
						Cou	rse ou	tcomes	5						
CO1	Unde	erstand	and Ex	xplain t	he con	cepts o	f Distr	ibuted	Genera	ation by	y vario	us Sou	rces of	Energ	у.
CO2	Analy Gene	yse the ration	e Pow	er Sys	stem F	Perform	nance,	Overlo	oading	and	Losses	impac	ts on	Distri	outed
CO3	Interp	oret Vo	ltage N	Magnit	ude Va	riations	s impa	cts on I	Distrib	uted G	enerati	on			
CO4	Study Power Quality Disturbances impacts on Distributed Generation														
CO-PO-PSO Mapping															
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				1	1						1	1	
CO2	3	2				1	1						1	1	
CO3	3	2				1	1						1	1	
CO4	3	2				1	1						1	1	
Average	3	2				1	1						1	1	

Subject:	Smart	Grid								Subj	ect Co	de:18E	EE744		
CO1	Expla	in the o	concep	t of sm	art gri	d enabl	ling the	e Electi	ricNet,	benefi	ts and o	drivers	of DC	power	
COI	delive	ery syst	em, in	telligrio	d archi	tecture	forthe	e smart	grid.						
	Descr	ibe the	smart	energy	effici	ent elec	ctric en	d-use	devices	s for wl	hole bu	ilding	contro	l syster	n,
CO2	dynar	nic ene	ergy ma	anagen	nent sy	stem, e	electro	-techno	ologies	for res	identia	l, com	mercial	and	
	industrial sectors Discuss demand side planning and evaluation														
CO3	Discuss demand side planning and evaluation														
					(CO-PO	-PSO	Mapp	ing						
COa						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2							3		
CO2	3	2				2							3		
CO3	3	2	1			2							3		
Average	3	2	1			2							3		

Subject:	Power	Systen	n Simu	ilation	Lab					Subj	ect Co	de: 181	EEL76)	
						Cou	rse Ou	tcomes	5						
CO1	Deter	mine tl	he perf	ormand	e of tr	ansmis	sion li	nes.							
CON	Obtai	n the	power	angle	charact	teristic	s of Sy	nchro	nous m	achine	and c	alculati	ion of	bus cu	rrent,
02	bus po	ower &	t line f	lows.											
CO3	Asses	s the ti	ansien	t stabil	ity und	ler thre	e phase	e faults	5						
CO4	Develop bus admittance, bus impedance and Jacobian matrices of interconnected power systems Analyse and solve problems on load flow, economic load dispatch and short circuit studies														
CO5	Analyse and solve problems on load flow, economic load dispatch and short circuit studies.														
					(CO-PO)-PSO	Mapp	ing						
COs						P	Os							PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2		2	3				3	3			3		2
CO2	3	3		2	3				3	3			3	2	2
CO3	3	3		2	3				3	3			3		2
CO4	3	3		2	3				3	3			3		2
CO5	3	3	3	2	3	2	2		3	3	3		3		

Average	3	2.8	3	2	3	2	2	3	3	3	3	2	2

Subject:	Relay a	and Hi	gh Vo	ltage L	Lab					Subj	ect Co	de: 181	EEL77	1	
CO1	Apply HVD	/ know C appli	vledge	for ob s to dis	taining stinguis	g break sh betw	down /een ur	charac niform/	teristic non-un	of air iform	insulat field co	ion sub ondition	ojected ns.	for H	VAC,
CO2	Apply stand	/ know ards an	ledge dasses	to ass ssing d	ess qu ielectri	ality o c stren	f trans gth of	formen it.	oil sa	mple b	y cond	lucting	exper	iment a	as per
CO3	Analyze the electromechanical & microprocessor based type of negative sequence relay, over current, over and under voltage relays. Acquire the knowledge experimentally by map field lines for co-axial cable model using														
CO4	current, over and under voltage relays. Acquire the knowledge experimentally by map field lines for co-axial cable model using electrolytic tank and protection of motor & generator.														
					(CO-PC)-PSO	Mapp	ing						
COa						P	Os							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				2	2		2	2			3		
CO2	3	2				2	2		2	2			3		
CO3	3	2				2	2		2	2			3		
CO4	3	2				2	2		2	2			3		
Average	3	2				2	2		2	2			3		

Subject: Project Phase I										Subject Code: 18EEP78					
Course Outcomes															
CO1	Apply the fundamental knowledge of mathematics, science and engineering principles in design of														
	solutions or system components.														
CO2	Identify, select, apply a suitable engineering/IT tool in modelling/data interpretation/analytical														
	studies, conduct experiments leading to a logical solution														
CO3	Desig	n mul	tidiscip	olinary	engine	eering	solutio	ons to	compl	ex pro	blems	addre	ssing s	societal	and
	environmental concerns.														
CO4	Communicate effectively to a diverse audience and develop technical reports and publications.														
CO5	Work as a team member/leader to manage projects and costs in a diversified environment.														
CO-PO-PSO Mapping															
COs	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		3				1				3	3	3	3
CO2	3	3	3		3			1					3	3	3
CO3	3	3	2			3	3	1					3	3	3
CO4	3							2	2	3			3	3	3
CO5	3					3		2	3	3	3	3	3	3	3
Average	3	3	2.5	3	3	3	3	1.4	2.5	3	3	3	3	3	3

Co-ordinator Dr. J P Sridhar

HOD Dr. Chandrashekar M J