

Sri Adichunchanagiri Shikshana Trust (R) SJB Institute of Technology

BGS H & E City, Dr. Vishnuvar dhana Road, Kengeri, Bengaluru – 560060 Approved by AICTE, New Delhi, An Autonomous Institution under Visvesvaraya Technological University, Belagavi Accredited by NAAC with 'A+' grade, Certified by ISO 9001-2015 Recognized by UGC, New Delhi with 2(f) & 12 (B).

Department of Artificial Intelligence and Machine Learning

Course Outcomes and CO-PO-PSO Articulation Matrix

BATCH 2022-2026

SEMESTER-III

	Subject: Mathematics for Computer Science Subject Code: BCS301															
						C	Course	Outco	mes							
CO1	Explain the basic concepts of probability, random variables, probability distribution.															
CO2	Apply suitable probability distribution models for the given scenario.															
CO3	Apply	the noti	on of a	discret	e-time l	Markov	chain a	and n-st	ep trans	sition pi	robabili	ties to s	olve th	e given	proble	m.
CO4	Use sta	tistical	method	lology a	and tool	ls in the	engine	ering p	roblem-	solving	, proces	s.				
CO5	Compute the confidence intervals for the mean of the population.															
CO6	Apply the ANOVA test related to engineering problems.															
						C	O-PO-P	SO Maj	oping							
60						P	Os							PS	Os	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2										2	1	1	1
CO2			3	2									1	1	1	1
CO3		2	3		2								1	1	1	1
CO4	2		3										1	2	1	1
CO5	2		3			2					2		1	1	2	1

	Subjec	ct: Dig	ital De	sign &	Comp	uter Or	ganiza	tion			S	ubject	Code:	BCS3	02	
						0	Course	Outco	mes							
CO1	Apply	the K–N	Map tec	hnique	s to sim	plify va	arious E	Boolean	express	sions						
CO2	Design	differe	nt types	s of con	nbinatio	onal and	l seque	ntial cir	cuits alo	ong wit	h Verilo	og prog	rams.			
CO3	Descri	be the	fundan	nentals	of ma	chine i	nstruct	ions, a	ddressi	ng moo	des and	proce	ssor pe	erforma	ance.	
CO4	Explair	n the ap	proache	es invol	ved in a	achievi	ng com	munica	tion bet	ween pi	rocessoi	and I/	O devic	ces.		
CO5	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance.															
	CO-PO-PSO Mapping															
COs						P	Os							PS	Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2		1										2		1	
CO2	2	3												2	2	
CO3	2			1	2									2		
CO4	1		2											2		2
CO5	2			2	1								1			2

		Su	bject:	Opera	ating S	Systems	5				S	ubject	Code:	BCS3	03	
						0	Course	Outco	mes							
CO1	Explair	n the str	ucture	and fun	ctional	ity of o _j	perating	g systen	1.							
CO2	Apply	appropi	riate CP	'U sche	duling	algorith	ms for	the give	en probl	lem.						
CO3	Analyz	e the va	arious to	echniqu	les for p	process	synchro	onizatio	n and d	eadlock	c handli	ng.				
CO4	Apply	the vari	ous tec	hniques	s for me	emory n	nanager	nent.								
CO5	Explain	n file ar	id secor	ndary st	orage r	nanagei	ment sti	rategies								
						CO	-PO-P	SO Ma	opping							
COs						P	Os							PS	Os	
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2											1			
CO2	2	2											1			
CO3		1	2										1			
CO4		2											1			
C05	2			1						1			1			

	Subj	ject: I	Data S	tructu	res and	d App	licatio	ns			S	ubject	Code:	BCS3	04	
						0	Course	Outco	mes							
CO1	Explain	n differe	ent data	ı structu	ires and	their a	pplicati	ons.								
CO2	Apply .	Arrays,	Stacks	and Qu	ieue dat	ta struc	tures to	solve t	ne giver	n problei	ms.					
CO3	Use the	e concej	pt of lin	nked lis	t in prol	blem so	olving.									
CO4	Develo	p soluti	ions usi	ng tree	s and gi	raphs to	model	the real	l-world	problem	1.					
CO5	Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees.															
						CO	-PO-P	SO Ma	pping							
COs						P	Os							PS	Os	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2		3									2	2	1	1	1
CO2	2		3	2								2	2	1	1	1
CO3	3		2									2	2	1	1	1
CO4	3		2									2	2	1	1	1
CO5	3		2									2	1	1	1	1

	S	ubject	: Data	Struc	tures l	Labora	atory				Su	ıbject	Code:	BCSL	305	
						(Course	Outco	mes							
CO1	Explain	n differ	ent data	structu	res and	l their a	pplicati	ons.								
CO2	Apply	Apply Arrays, Stacks and Queue data structures to solve the given problems.														
CO3	Use the concept of linked list in problem solving.															
	CO-PO-PSO Mapping															
COs				PSOs												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	1			1							2			
CO2	2	2	1	1		1							2			
CO3	2	2	1	1		1							2			
CO4	2	2	1	1		1							2			
CO5												2	1			

	Subjec	et: Pytl	non Pr	ogram	ming	for Da	ta Scie	ence			S	ubject	Code	BDS30	6B	
						C	Course	Outco	mes							
CO1	Descrit	be the c	onstruc	ts of Py	thon pr	rogramı	ning									
CO2	Use loc	oping a	nd cond	litional	constru	cts to b	uild pro	ograms.								
CO3	Apply	the con	cept of	data str	ucture t	to solve	the rea	ıl-world	l proble	m.						
CO4	Use the	e NumP	y const	ructs fo	or matri	x manip	oulation	IS								
CO5	Apply	the Pan	da cons	structs f	òr data	analyti	cs.									
						CO	-PO-P	SO Ma	opping							
COs						P	Os							PS	Os	
0.03	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2										2	1	1	1
CO2			3	2									1	1	1	1
CO3		2	3		2								1	1	1	1
CO4	2		3										1	2	1	1
CO5	2		3			2					2		1	1	2	1

		Subj	ect: Da	ata An	alytics	with H	Excel				S	ubjec	t Code	BCS3	58A	
							Course	e Outc	omes							
CO1	Use a	dvance	d functi	ions and	l produc	ctivity to	ools to	assist in	n develo	ping wo	rksheet	s				
CO2	Mani	pulate d	ata lists	s using	Outline	and Piv	/otTabl	es.		p <u>6</u> o	moneer					
CO3	Use C	onsolid	ation to	o summ	aries an	d repor	t results	s from 1	nultiple	worksh	eets					
CO4	Apply	Macro	s and A	uto filte	er to sol	lve the g	given re	eal-wor	ld scena	rio.						
						CO	-PO-P	SO M	apping	36 1		14434		2		
COs						P	Os		11 0					PS	SOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	1 2	2	1
CO1	1	1		1	1				1	10		12	1		3	4
CO2	1	1		1	1				1				1			
CO3	1	1		1	1								1	1		
CO4	1	1	-	1	1				1				1	1		
CO5	1	1		1	1				1				1	1		
		-		1	1				1				1	1		_

1,2/2023 CHOD 20

Head of the Department Department of Artificial Intelligence and Machine Learning SJB INSTITUTE OF TECHNOLOGY BGS Health & Education City, No. 67, Uttarahalli Road, Kengeri Bengaluru - 560 060

Dept. of AI &ML, SJBIT.

4 | Page